Emotional Modulation of the Attentional Blink: Is There an Effect of Stress?

Lars Schwabe and Oliver T. Wolf
Ruhr University Bochum

Individuals are often unable to identify the second target (T2) of two when it is presented within 500 ms after the first target (T1). This “attentional blink” (AB) is attenuated by an emotionally arousing T2. Stress is known to affect cognitive performance, in particular for emotional material. In the present study, we asked whether (a) an emotional T2 reduces the AB when preceded by an emotional T1 and (b) the emotional modulation of the AB is affected by stress. Participants were presented neutral and aversive words as T1 and T2 in rapid serial visual presentation after they were exposed to stress (socially evaluated cold pressor test) or a control condition in a crossover manner. Our results indicate that an aversive T1 extends the AB. Aversive T2 attenuated the AB in the presence of a neutral, but not an aversive, T1. Stress-enhanced T2 detection and high cortisol responses to stress reduced the AB. However, neither stress nor cortisol interacted with the emotionality of the target words. In summary, these findings point to a strong impact of emotional factors on early perceptual experiences.

Keywords: attention, attentional blink, emotion, stress, cortisol

Our cognitive system has limited processing capacities. The limitations of cognitive processing can be studied, for example, with rapid serial visual presentation (RSVP). Typically, individuals have problems in detecting the second of two consecutive target stimuli (T1 and T2 for first and second target stimulus, respectively) when T2 is presented very soon after T1, such as with an interval of less than 500 ms (Broadbent & Broadbent, 1987; Raymond, Shapiro, & Arnell, 1992; Shapiro, Arnell, & Raymond, 1997). It has been proposed that this transient deficit in the detection of T2, referred to as an attentional blink (AB), is due to the short-term consolidation of the T1, which makes attentional resources temporarily unavailable for allocation to T2 (Chun & Potter, 1995; Jolicouer, 1999).

Recent evidence indicates that the AB can be reduced when emotionally arousing stimuli are presented as T2 (Anderson & Phelps, 2001; Keil & Ihssen, 2004). This might suggest a lower threshold for emotional stimuli that frees them from the attentional limitation underlying the AB or, alternatively, that emotionally arousing material may attract more attentional resources than neutral material (Anderson, 2005). It is interesting that a recent study provided the first evidence that the AB is modulated not only by the emotionality of the T2 but also by the emotionality of the T1 (Mathewson, Arnell, & Mansfield, 2008; see also Smith, Most, Newsome, & Zald, 2006). Similar to emotional “to-be-ignored” distractors in the RSVP stream (Arnell, Killman, & Fijavz, 2007), emotionally arousing T1s caused a significant increase in the AB compared with neutral T1s, which was interpreted as extended processing of emotional T1s. In this study, however, only neutral items were presented as T2s. Whether an emotionally arousing T2 is capable of reducing the AB in the presence of an attention-attracting emotional T1 is not known. Given that our attentional capacities are limited and the processing of the T1 is the main cause for the AB, it is predicted that the extended processing of emotionally arousing T1 inhibits the AB attenuation by an emotionally arousing T2.

In addition to the emotionality of the stimulus material, cognitive performance can be influenced by the emotional state of the individual (Christianson, 1992). There is plenty of evidence for altered cognitive functions when individuals are stressed (Joels, Pu, Wiegert, Otitzl, & Krugers, 2006; Wolf, 2008). Hormones released during stressful experiences, such as noradrenaline and cortisol, influence brain structures relevant for attention, learning, and memory (Joels et al., 2006). The influence of stress (hormones) on learning and memory is well documented and depends on the timing of the stress exposure. Stress within the context of the learning experience enhances memory, whereas stress outside of the learning context impairs memory (Joels et al., 2006). It is interesting that these effects are most pronounced for emotional material (Kuhlmann, Piel, & Wolf, 2005; Schwabe, Bohringer, Chatterjee, & Schachinger, 2008). Less is known about stress effects on attention processes. Only relatively few studies examined the impact of stress on attention. These yielded inconsistent findings, with some studies showing enhancing effects of stress (hormones) (Putman, Hermans, Koppeschaar, van Schijndel, & van Honk, 2007; Roelofs, Bakvis, Hermans, van Pelt, & van Honk, 2008).
Stimuli. Participants were presented neutral (e.g., time, wood, line) and aversive (e.g., bitch, bastard, ass) German nouns as T1 and T2 in the RSVP procedure. T1 and T2 were matched for word length. Furthermore, the neutral and aversive words were rated by 40 students (22 women, 18 men; mean age = 25.7 years, \(\text{SEM} = 1.2 \) years) who did not participate in the present experiment with respect to their familiarity. These ratings revealed that both neutral and aversive words were highly familiar (for both word types, average familiarity >95%). Distractor words were neutral German nouns that were significantly longer than the target words (12.0 vs. 5.5 letters) to ensure that the targets were masked by them. At the end of the second experimental session, participants rated the arousal and the valence of the presented words. In retrospect, these ratings verified that aversive words were experienced as significantly more negative and significantly more arousing than neutral words, both \(t(35) > 8.9 \), both \(p < .001 \), both \(ds > 2.1 \).

RSVP task. The RSVP task was created with the Biopsychology toolbox (Rose, Otto, & Dittrich, 2008) and presented with Matlab software (TheMathworks, Natick, MA) on a 17-inch (43.18-cm) computer screen. On each trial, participants were presented a sequence of 15 words, 2 target words (T1 and T2) written in red and 13 distractor words written in white, at the center of a black screen. Each word was presented for 110 ms with no break between the words. Participants were instructed to attend to the words written in red and to ignore the other words. Immediately after a sequence had been presented, participants were asked to type in the 2 target words. We presented 1, 2, 3, 4, 5, or 6 words between T1 and T2, corresponding to six temporal lags ranging from a stimulus onset asynchrony (SOA) of 220 ms to a SOA of 770 ms. Target words were either neutral or aversive, and four T1–T2 combinations were presented: (a) both targets neutral, (b) T1 neutral, T2 aversive, (c) T1 aversive, T2 neutral, or (d) both targets aversive. There were 8 trials for each factor combination of the 6 (lag) \(\times 4 \) (T1–T2) conditions, resulting in 192 trials in total, whose occurrence was fully randomized. Each target word was presented twice as T1 and twice as T2. Participants needed about 20 min for task completion.

Procedure

After participants read the study information and provided written consent in their participation, a first saliva sample was collected and a baseline blood pressure measurement was taken. Next, participants were exposed to the SECT or the control condition; blood pressure was measured during hand immersion. Immediately after the treatment, participants rated on a scale ranging from 0 (not at all) to 100 (very much) how stressful, painful, and unpleasant they had experienced the previous situation. Another saliva sample was collected, and blood pressure was measured again. After a 20-min break in which they were allowed to read, participants started with the RSVP task. This interval between the SECT (or control condition) and the RSVP task was chosen because previous studies indicated that the stress hormone cortisol reaches peak levels 20 min after the SECT (Schwabe, Bohringer, et al., 2008; Schwabe, Haddad, et al., 2008). Before they performed the RSVP task as described earlier, participants were given three training trials (which were exactly the same for all participants). At the end of the session, a last saliva sample was collected.
Seven days after the first experimental session, participants returned to the laboratory; the procedure was repeated but with another version of the RSVP task, and this time participants received the treatment (SECPT or control condition) they had not received during the previous week.

All testing was conducted in the morning between 8:30 and 12:30 a.m. to control for the diurnal rhythm of cortisol, which is characterized by a morning peak and an evening nadir.

Statistical Analyses

We analyzed the subjective assessments of the SECPT and control condition using paired *t* tests, blood pressure, and cortisol responses by separate repeated measurement analyses of variance (ANOVAs), with treatment (SECPT vs. control condition) and time point of measurement as factors. Salivary cortisol data were missing for 2 participants, because these participants did not provide enough saliva for biochemical analyses. Following the analyses of Anderson and Phelps (2001), the six temporal lags between T1 and T2 were segregated in early (SOA > 500 ms) and late (SOA > 500 ms) temporal lags. Performance in the RSVP task was analyzed with a $2 \times 2 \times 2 \times 2$ Treatment (SECPT vs. control condition) \times Lag (early vs. late) \times T1 (neutral vs. aversive) \times T2 (neutral vs. aversive) ANOVA. To examine whether a possible stress effect is mediated through the stress hormone cortisol, we calculated the individual cortisol response to stress as difference between the peak and baseline cortisol concentrations. Participants with an increase above the group median (1.7 nmol/L) were classified as high responders, and those whose cortisol increase was below the median as were classified as low responders. Then we performed a $2 \times 2 \times 2 \times 2$ Cortisol Response (high vs. low) \times Lag (early vs. late) \times T1 (neutral vs. aversive) \times T2 (neutral vs. aversive) ANOVA. All reported *p* values are two-tailed. The partial eta square (η^2) and Cohen’s d were used as measures of effect size for ANOVAs and *t* tests, respectively.

Results

Subjective and Physiological Responses to Stress

In the stress condition, all but 2 participants submerged their hands for the full 3 min in ice water. These 2 participants took their hands out of the water after 60 and 110 s, respectively, but did not differ in their stress responses from the rest of the participants.

Subjective assessments. As indicated in Table 1, participants experienced the stress condition as significantly more stressful, painful, and unpleasant than the control condition, all *ts*(35) > 7.5, all *p* < .001, all *d* > 1.8.

Blood pressure. The exposure to the SECPT caused a significant increase in systolic blood pressure (for treatment, *F*(1, 35) = 8.8, *p* < .001, $\eta^2 = 0.20$; for Treatment \times Time, *F*(2, 70) = 71.0, *p* < .001, $\eta^2 = 0.67$) and diastolic blood pressure (for treatment, *F*(1, 35) = 3.9, *p* = .05, $\eta^2 = 0.10$; for Treatment \times Time, *F*(2, 70) = 44.6, *p* < .001, $\eta^2 = 0.56$). Table 1 shows that participants had significantly higher blood pressure during the SECPT than during the control condition, whereas there were no differences between the conditions before and after the treatment.

Salivary cortisol. The concentration of the stress hormone cortisol increased in response to the SECPT but not in response to the control condition (for Treatment \times Time, *F*(3, 99) = 9.2, *p* < .001, $\eta^2 = 0.22$; for treatment, *F*(1, 33) = 2.2, *p* = .15, $\eta^2 = 0.06$; see Table 1), suggesting, in line with the subjective and blood pressure data, that participants were stressed after the SECPT but not the control condition.

Performance in the RSVP Task

The T1 report remained unaffected by stress and the emotionality of T1 and T2 (all *Fs* < 2.3). On average, the T1 was correctly reported in 88% of the trials (SEM = 1.3).

As expected, participants showed an AB as reflected in a significant increase in T2 detection accuracy from early to late temporal lags (66 vs. 87%), *F*(1, 35) = 183.9,*p* < .001, $\eta^2 = 0.84$. Confirming the assumption that the AB is extended by an emotionally arousing T1, compared with a neutral T1, the ANOVA yielded a significant main effect of T1, *F*(1, 35) = 76.8, *p* < .001, $\eta^2 = 0.69$. As shown in Figure 1A, T2 detection decreased significantly when the T1 was aversive, and this effect was most pronounced at early lags: For Lag \times T1, *F*(1, 35) = 15.5, *p* < .001, $\eta^2 = 0.31$. There was no main effect of T2, *F*(1, 35) = 0.32, *p* = .58, $\eta^2 = 0.03$; however, the AB was attenuated when aversive words were presented as T2: For T2 \times Lag, *F*(1, 35) = 17.0, *p* < .001, $\eta^2 = 0.33$ (see Figure 1B). This effect, however, depended critically on the emotionality of the T1: For the Lag \times T2 \times T1 interaction, *F*(1, 35) = 3.9, *p* = .05, $\eta^2 = 0.10$. An emotionally arousing T2 reduced the AB when the T1 was neutral, *F*(1, 35) = 32.8, *p* < .001, $\eta^2 = 0.38$; but not when the T1 was also emotionally arousing, *F*(1, 35) = 2.6, *p* = .13, $\eta^2 = 0.06$.

Stress before the RSVP task had overall a relatively small but statistically significant positive effect on T2 detection, *F*(1, 35) = 4.2, *p* < .05, $\eta^2 = 0.11$ (see Figure 1C). Participants’ T2 detection accuracy increased from 73% to about 78% when they were stressed before task performance. However, the treatment did not

Table 1

<table>
<thead>
<tr>
<th>Measure</th>
<th>Control</th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subjective assessments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stressfulness</td>
<td>5.0 (1.4)</td>
<td>35.8 (4.0)*</td>
</tr>
<tr>
<td>Unpleasantness</td>
<td>6.7 (1.3)</td>
<td>54.7 (4.5)*</td>
</tr>
<tr>
<td>Painfulness</td>
<td>3.3 (1.5)</td>
<td>56.7 (4.1)*</td>
</tr>
<tr>
<td>Systolic blood pressure (in mmHg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before hand immersion</td>
<td>128.1 (2.5)</td>
<td>124.8 (2.3)</td>
</tr>
<tr>
<td>During hand immersion</td>
<td>123.9 (2.2)</td>
<td>139.0 (2.5)*</td>
</tr>
<tr>
<td>After hand immersion</td>
<td>119.5 (2.2)</td>
<td>119.2 (1.8)</td>
</tr>
<tr>
<td>Diastolic blood pressure (in mmHg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Before hand immersion</td>
<td>67.8 (1.2)</td>
<td>64.9 (1.4)</td>
</tr>
<tr>
<td>During hand immersion</td>
<td>67.7 (1.2)</td>
<td>76.8 (1.5)*</td>
</tr>
<tr>
<td>After hand immersion</td>
<td>65.2 (1.0)</td>
<td>63.5 (1.2)</td>
</tr>
<tr>
<td>Salivary cortisol (in nmol/L)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>16.4 (1.4)</td>
<td>15.0 (1.8)</td>
</tr>
<tr>
<td>1 min posttreatment</td>
<td>16.4 (1.3)</td>
<td>15.8 (1.7)</td>
</tr>
<tr>
<td>20 min posttreatment</td>
<td>13.8 (1.0)</td>
<td>20.3 (2.2)*</td>
</tr>
<tr>
<td>50 min posttreatment</td>
<td>10.4 (0.8)</td>
<td>12.6 (1.3)</td>
</tr>
</tbody>
</table>

Note. Subjective assessments were measured on a scale ranging from 0 (not at all) to 100 (very much). Asterisks indicate significant difference between the stress and control conditions, *p* < .01.
Cortisol high and low responders (i.e., stressed participants with a cortisol increase above and below the group median, respectively) did not differ in their overall T2 detection, $F(1, 34) = 1.9$, $p = .18$, $\eta^2 = 0.05$; but high cortisol responses to the SECPT attenuated the AB: For the Cortisol Response × Lag interaction, $F(1, 34) = 10.2$, $p < .01$, $\eta^2 = 0.23$. High cortisol responders outperformed low responders at early lag, $F(1, 34) = 4.6$, $p < .05$, $\eta^2 = 0.12$; but not at late lag, $F(1, 34) = 0.4$, $p = .65$, $\eta^2 < 0.01$ (see Figure 1D), regardless of the emotionality of T1 and T2 (all $F_s < 2.1$). Moreover, there was a significant negative correlation between the cortisol response to stress and the magnitude of the AB (calculated as T2 detection at late lag - T2 detection at early lag; $r = -.33$, $p < .05$) suggesting that higher cortisol responses to stress were associated with a reduced AB.

Discussion

In line with several previous studies, we found that participants have difficulties in identifying T2 when presented within 500 ms after T1 (Broadbent & Broadbent, 1987; Mathewson et al., 2008; Raymond et al., 1992) and that this AB was reduced when the T2 was emotionally arousing (Anderson & Phelps, 2001; Keil & Ihssen, 2004). The novel finding presented here is that the blink-reducing effect of an emotionally arousing T2 disappears when the T1 is also emotional, suggesting that the emotionality of the T1 is a critical factor in the emotional modulation of the AB. Given that emotionally arousing stimuli attract substantial attentional resources (Dijksterhuis & Aarts, 2003), this finding supports theories assuming that the AB is mainly due to the processing of T1, which makes attentional resources unavailable for the T2 (Chun & Potter, 1995; Jolicouer, 1999). At the same time, the present results argue against the view that emotionally
arousing stimuli are freed from attentional limitations (Anderson, 2005) because otherwise the detection of an emotionally arousing T2 should have been insensitive to the emotionality (processing demands) of T1. Rather, our findings suggest that emotionally arousing T1s capture and hold attention (Mathewson et al., 2008), thus leaving only few attentional resources for allocation to T2, regardless of whether the T2 is neutral or emotionally arousing.

Beyond the effects of the emotionality of the presented stimuli, we demonstrate that attention performance in an RSVP task is influenced by the emotional state of the individual. Participants exposed to stress before the RSVP task showed slightly enhanced T2 detection performance, both at early and late temporal lags between T1 and T2. This is consistent with Callaway and Thompson’s (1953) notion of focused attention under stress and may provide an explanation for the memory-enhancing effects of stress administered before learning that was observed in some studies (Nater et al., 2007; Schwabe, Bohringer, et al., 2008). Pharmacological studies provided evidence that the neurotransmitter noradrenaline, which is also released in response to stress, facilitates selective attention (Aston-Jones & Cohen, 2005; Clark, Geffen, & Geffen, 1986; de Martino, Strange, & Dolan, 2008). In the present study, participants performed the RSVP task 20 min after the stressor, when cortisol reached peak levels but noradrenaline, as reflected in the blood pressure changes, returned to baseline already. Thus, noradrenaline was most likely not the driving force behind the observed stress-induced attention enhancement. Our finding, that the AB correlated negatively with the cortisol increase in response to stress, points to a crucial role of the stress hormone cortisol, suggesting that the noradrenaline and cortisol stress systems act—at different time points—in concert to enhance attention.

At first glance, the present finding that high cortisol responses to stress were associated with a reduced AB may be seen as in conflict with recent evidence showing an increased AB in an anxious mood state (Jeffries, Smilek, Eich, & Enns, 2008). However, anxiety does not necessarily elicit an increase in cortisol. Moreover, arousal parameters such as blood pressure were already in the normal range again (i.e., participants were most likely not anxious anymore) when the RSVP task started.

Stress effects on learning and memory are most pronounced for emotional material (for a review and examples of stress effects on neutral material, see Wolf, 2008). Moreover, neuropsychological evidence suggests that the emotional modulation of the attentional blink relies on an intact amygdala (Anderson & Phelps, 2001), the activity of which is known to be enhanced by stress (Diamond, Campbell, Park, Halonen, & Zoladz, 2007). Therefore, we hypothesized that stress would especially affect the detection of emotional targets. This, however, was not the case. Stress enhanced attention for neutral and emotional stimuli to the same extent. This, however, was not the case. Stress enhanced attention for neutral and emotional stimuli to the same extent. Therefore, we hypothesized that stress would especially affect the detection of emotional targets. This, however, was not the case. Stress enhanced attention for neutral and emotional stimuli to the same extent.

In conclusion, the results of this experiment demonstrate that attention is influenced by both the emotional state of the individual and the emotionality of the presented material. We show that humans are endowed with capabilities enhancing the quick and efficient detection of stimuli significant to the organism. These capabilities, however, appear to reach their limits when two such stimuli occur in rapid succession.

This first study on the impact of stress on attention in a RSVP task examined only male participants to keep the sample homogeneous with respect to sex hormones, which are known to change the neuroendocrine response to stress (Kirschbaum et al., 1999). In the face of evidence suggesting sex differences in cognition and the effect of stress on cognition (Cahill, 2006; Wolf, Schommer, Hellhammer, McEwen, & Kirschbaum, 2001), future studies are needed to corroborate our findings in women.

References
Jolicouer, P. (1999). Dual-task interference and visual encoding. Journal of

Received March 2, 2009
Revision received August 12, 2009
Accepted September 1, 2009