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Abstract
Extensive evidence from both animal model and human research indicates that glucocorticoid hormones are crucially involved in
modulating memory performance. Glucocorticoids, which are released during stressful or emotionally arousing experiences,
enhance the consolidation of new memories, including extinction memory, but reduce the retrieval of previously stored mem-
ories. These memory-modulating properties of glucocorticoids have recently received considerable interest for translational
purposes because strong aversive memories lie at the core of several fear-related disorders, including post-traumatic stress
disorder and phobias. Moreover, exposure-based psychological treatment of these disorders relies on successful fear extinction.
In this review, we argue that glucocorticoid-based interventions facilitate fear extinction by reducing the retrieval of aversive
memories and enhancing the consolidation of extinction memories. Several clinical trials have already indicated that glucocor-
ticoids might be indeed helpful in the treatment of fear-related disorders.
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Introduction

Stress mediators, including hormones, peptides, and neuro-
transmitters, promote the organism’s ability to cope with stress
by acting on target systems in the periphery but also by

exerting numerous effects on the brain (Joëls and Baram
2009). In addition to preparing an individual for the acute
consequences of dangerous or threatening situations (i.e.,
fight-flight response) and the return to homeostasis, an impor-
tant function of the stress response is to induce long-term
adaptive responses, including influences on learning and
memory (Roozendaal and McGaugh 2011). Notably, stressful
and emotionally arousing events are typically remembered
better than ordinary events (McGaugh 2003). By contrast,
memory retrieval can be hampered during stressful and emo-
tionally arousing conditions (de Quervain et al. 2009, 2017;
Wolf 2017).

Extensive evidence from studies in animals have indicated
that glucocorticoid hormones, in concert with many other
stress mediators, are crucially involved in mediating the mod-
ulatory effects of stress on both the consolidation and retrieval
of memory (Quirarte et al. 1997; de Quervain et al. 1998;
Roozendaal et al. 2009). Furthermore, glucocorticoids are
known to interact with arousal-induced noradrenergic activity
to selectively modulate memory of emotionally arousing in-
formation or during emotionally arousing test situations (de
Quervain et al. 2009). Importantly, these modulatory effects of
glucocorticoids on emotional memory processes have also
been found in studies with healthy humans (de Quervain
et al. 2009; Wolf 2009; Schwabe et al. 2012).
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It seems highly adaptive to have such biological processes
that enable the significance of events to regulate their remem-
brance (McGaugh 2003; de Quervain et al. 2009). However, in
case of extremely aversive events, overly traumatic or fearful
memories may contribute to the development and symptoms of
fear-related disorders, such as post-traumatic stress disorder
(PTSD) and phobias. Current options for treating fear-related
disorders mainly consist of exposure-based psychotherapy,
which is based on extinction of conditioned fear by re-
exposure to trauma- or fear-related memories, and/or anxiety-
reducing and antidepressant medications. Psychotherapeutic
interventions are generally successful, especially in phobias,
but treatment response is diverging and the return of fear is a
well-known problem (Bandelow et al. 2007). Exposure therapy
is therefore ineffective in a substantial subgroup of over 50% of
patients (Bradley et al. 2005; Bandelow et al. 2007; Cusack
et al. 2016). Also, current pharmacological treatments such as
anxiolytic or antidepressant drugs are far from satisfactory,
since many patients continue to have symptoms (Barton et al.
2014). Such treatments primarily relieve stress and anxiety
symptoms (Ipser et al. 2006) but do not diminish the underlying
aversive memory trace (Lin et al. 2016). Therefore, new thera-
peutic approaches are desperately needed.

A possible pharmacological approach to prevent PTSD af-
ter trauma exposure is to reduce the initial consolidation of
memory of aversive events, for example by the use of opioids
(Holbrook et al. 2010) or beta-adrenergic receptor blockers
(Pitman et al. 2002). Another approach would be to diminish
the excessive retrieval of aversive memories, thereby reducing
the severity and/or frequency of experienced symptoms such
as intrusions and nightmares. Inhibition of memory retrieval
during the first days or weeks after a traumatic event may also
counteract the progressive formation of an overly strong trau-
matic memory trace, thus having preventing effects with re-
gard to the development of PTSD. A further approach might
consist of aiding the extinction of the traumatic memory trace
(a process that is often impaired in patients with fear-related
disorders) (Wessa and Flor 2007). This approach might be
particularly well suited if the drug treatment is combined with
exposure therapy in a timed manner to boost extinction and
improve the long-term outcome of exposure therapy.

Here, we reason that glucocorticoid treatment is of special
interest for preventing and treating fear-related disorders be-
cause they can affect multiple memory processes, i.e., reduce
the retrieval of aversive memories and enhance the consolida-
tion of extinction memories, that synergistically contribute to
a reduction of fear-related symptoms (Fig. 1).

Stress, glucocorticoids, and memory

Stress leads to an activation of the hypothalamus-pituitary-
adrenal (HPA) axis. Activation of the HPA axis triggers a

cascade of events that induces the release of glucocorticoids
(mainly cortisol in humans, corticosterone in rodents) from the
adrenal cortex (Ulrich-Lai and Herman 2009). First,
corticotropin-releasing factor (CRF) is released by the hypo-
thalamic paraventricular nucleus into the portal system. CRF
then induces the release of adrenocorticotropin from the adre-
nal pituitary gland, which subsequently stimulates the release
of glucocorticoids from the adrenal cortex into the blood-
stream (Smith and Vale 2006). In the periphery, glucocorti-
coids exert, for example, immunosuppressive actions and in-
creases in blood glucose levels (Wajchenberg et al. 1984;
Sapolsky et al. 2000; Kuo et al. 2015).

In the 1960s and 70s, it was first discovered that glucocor-
ticoids can facilitate the extinction of fear-motivated behaviors
(Bohus and Lissak 1968). Many subsequent studies reported
both enhancing and impairing properties of glucocorticoids on
cognitive performance (Flood et al. 1978; Beckwith et al.
1986; Luine et al. 1993; Arbel et al. 1994; Kirschbaum et al.
1996). More recent studies indicated that glucocorticoids can
have opposite effects on distinct memory processes. There is
now extensive evidence for the view that glucocorticoids en-
hance the consolidation of memory of new information, in-
cluding extinction memory, but impair the retrieval of already
stored information (de Quervain et al. 2009; Schwabe et al.
2012). Most of these glucocorticoid effects on specific mem-
ory functions have been investigated in conditions with acute
elevations of glucocorticoid levels, such as by an acute stress-
or or single glucocorticoid administration. Although clinical
conditions with chronically elevated glucocorticoid levels are
usually associated with impaired cognitive performance

Fig. 1 Glucocorticoid-induced enhancement of extinction. According to
this model, glucocorticoids reduce the retrieval of aversive memories and
thus curtail the expression of fear. A reduction of aversive memories may
also support fear extinction: Experiencing reduced fear in otherwise
fearful situations is likely to support fear extinction processes by
promoting non-fearful, corrective experiences. Further, glucocorticoids
enhance the consolidation of extinction memory
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(Sapolsky 2000; McEwen 2001), it became clear that gluco-
corticoid administration even under such chronic stress con-
ditions often exerts opposite effects on consolidation and re-
trieval processes. For example, comparable to the memory
effects in acute conditions, a single glucocorticoid administra-
tion to patients with PTSD or phobias (which are chronic
stress conditions) reduces the recall, but enhances the extinc-
tion, of fear memories (de Quervain et al. 2009). Furthermore,
acute glucocorticoid administration also impairs retrieval pro-
cesses in patients who have chronically elevated glucocorti-
coid levels (as a result of medication) (Coluccia et al. 2008). In
the following sections, we discuss acute glucocorticoid effects
on different memory processes.

Consolidation

Memory consolidation refers to a process by which a fragile
short-term memory trace is transferred into stable long-term
memory (McGaugh 2000). However, not all information is
equally well transferred into long-term memory. In fact, it is
well recognized that especially emotionally arousing (pleasant
or unpleasant) life events are remembered better than neutral
events, even after a long period of time (McGaugh 2003).
There is compelling evidence from studies in both animals
and humans that glucocorticoids are crucially involved in reg-
ulating the consolidation of memory processes (Roozendaal
2000; McGaugh and Roozendaal 2002; Het et al. 2005; Sandi
and Pinelo-Nava 2007; de Quervain et al. 2009; Roozendaal
et al. 2009; Schwabe et al. 2012; de Quervain et al. 2017).
Blockade of glucocorticoid production with the synthesis in-
hibitor metyrapone impairs consolidation processes in both
animals and humans (Cordero et al. 2002; Maheu et al.
2004). In contrast, acute systemic glucocorticoid administra-
tion enhances long-term memory when given either before
(Sandi and Rose 1994; Buchanan and Lovallo 2001;
Abercrombie et al. 2003) or shortly after a training experience
(Flood et al. 1978; Sandi and Rose 1994; Roozendaal and
McGaugh 1996; Roozendaal et al. 1999a). Glucocorticoid
manipulations applied before learning may affect both
encoding and consolidation processes. Human work has
shown that administration of glucocorticoids might affect the
encoding of memory by having an influence on both sensory
(Miller et al. 2015) and attentional processes (Putman and
Roelofs 2011; Hermans et al. 2014). Glucocorticoid effects
on memory consolidation follow an inverted U-shaped dose-
response relationship: Moderate doses enhance consolidation
processes, whereas lower or higher doses are typically less
effective or even induce memory impairment (Roozendaal
et al. 1999b; Andreano and Cahill 2006).

Some evidence indicates that stress effects onmemory con-
solidation are more pronounced in men than in women
(Andreano and Cahill 2006; Preuss and Wolf 2009;
Cornelisse et al. 2011), possibly due to an interaction with

sex hormones; in particular, hormonal contraceptives can raise
cortisol-binding globulin (CBG) concentrations and therefore
lead to a blunted free cortisol response (Kirschbaum et al.
1999) and reduce stress effects on memory (Preuss and Wolf
2009; Cornelisse et al. 2011;Merz andWolf 2017). Consistent
with these findings, no sex differences in memory effects were
reported among people acutely dosed with exogenous cortisol
(Buchanan and Lovallo 2001).

Evidence from several kinds of studies indicates that glu-
cocorticoids interact with arousal-induced noradrenergic ac-
tivity in influencing memory consolidation (Roozendaal and
McGaugh 2011). For example, animal model studies have
shown that glucocorticoid administration after footshock de-
livery in an inhibitory avoidance task rapidly augments nor-
adrenaline levels within the basolateral amygdala
(McReynolds et al. 2010). On the other hand, attenuation of
noradrenergic signaling with a beta-adrenergic receptor antag-
onist administered systemically or directly into the basolateral
amygdala blocks the enhancing effect of glucocorticoids on
memory consolidation for emotionally arousing training ex-
periences (Quirarte et al. 1997; Roozendaal et al. 2006).
Further, glucocorticoid administration immediately after ob-
ject recognition training enhances 24-h memory of emotion-
ally aroused rats but not that of rats previously habituated to
the training context in order to reduce novelty-induced emo-
tional arousal (Okuda et al. 2004; Roozendaal et al. 2006).
However, with such low-arousing conditions, pharmacologi-
cal reinstatement of (nor)adrenergic activity by the adminis-
tration of the noradrenergic stimulant yohimbine enables
glucocorticoid-induced memory enhancement (Roozendaal
et al. 2006). Human studies generally support the conclusion
of animal experiments in that glucocorticoids enhance mem-
ory consolidation only when their activity is paralleled by
emotional arousal (i.e. noradrenergic activity) (Kuhlmann
and Wolf 2006a; Segal et al. 2014). Cortisol administered
shortly before or after training selectively enhances long-
term memory of emotionally arousing, but not of emotionally
neutral, items (Buchanan and Lovallo 2001; Kuhlmann and
Wolf 2006a). Moreover, a cold pressor stress in humans (i.e.,
placing the arm in ice water), a procedure that significantly
elevates endogenous cortisol levels, enhances memory of
emotionally arousing slides, but does not affect memory of
emotionally neutral slides (Cahill et al. 2003; Preuss and
Wolf 2009).

Glucocorticoid hormones are highly lipophilic (McEwen
et al. 1979) and bind directly to mineralocorticoid receptors
(MRs) and glucocorticoid receptors (GRs) in the brain (Reul
and de Kloet 1985; Arriza et al. 1987). MRs have a high
affinity for the natural steroids corticosterone, cortisol and
aldosterone, whereas GRs have an approximately 10 times
lower affinity for corticosterone and cortisol but show a high
affinity for the synthetic ligand dexamethasone (Reul et al.
1987; Sutanto and de Kloet 1987). The memory-enhancing
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effects of glucocorticoids appear to involve the selective acti-
vation of the low-affinity GR (Oitzl and de Kloet 1992;
Roozendaal and McGaugh 1997). Some studies, however,
indicated thatMR function, either alone or in conjunction with
GRs, might also be implicated in mnemonic functions
(Rimmele et al. 2013; Atucha et al. 2015; Hinkelmann et al.
2015), but in most cases, evidence for a direct influence on
consolidation processes is lacking.

Glucocorticoids are known to act through intracellular and
intranuclear receptors and can affect neuronal function
through their ability to affect gene transcription (Datson
et al. 2001). However, glucocorticoids also have various
non-genomic actions on neuroplasticity and memory, through
a membrane-associated variant (or variants) of the steroid re-
ceptor (Johnson et al. 2005; Barsegyan et al. 2010; Riedemann
et al. 2010; Roozendaal et al. 2010; Lee et al. 2011).
Activation of these membrane steroid receptors results in ef-
fects such as a rapid increase in glutamate-release probability
from presynaptic sites (Karst et al. 2005) and rapid insertion of
AMPA-receptor subunits into postsynaptic membranes
(Conboy and Sandi 2010; Krugers et al. 2010). Several exper-
imental findings have shown that glucocorticoid effects on
increasing noradrenergic signaling also have an onset that is
too fast to be mediated via transcriptional regulation in the
nucleus and likely involve a rapid, non-genomic mode of ac-
tion. Glucocorticoids and noradrenaline signaling mecha-
nisms might act synergistically to rapidly enhance AMPA-
receptor function (Zhou et al. 2012) as well as to influence
several other molecular events—for example, such interac-
tions may induce rapid phosphorylation of the transcription
factor cAMP-responsive element-binding protein (CREB)
which, after binding to CREB-binding protein (CBP), pro-
motes associated epigenetic mechanisms such as histone acet-
ylation (Roozendaal et al. 2010; Chen et al. 2012). A recent
study indicated that a moderate dose of glucocorticoids com-
bined with noradrenergic stimulation caused a transient en-
hancement of glutamatergic transmission within the
basolateral amygdala, but that this time window of excitability
was extended in conditions mimicking severe stress (Karst
and Joëls 2016). These genomic and non-genomic glucocor-
ticoid actions may ultimately, and collectively, result in
neuroplasticity and structural changes, e.g., via modifications
of cell-adhesion molecules, and strengthen cell-cell interac-
tions (Sandi 2011).

Recent findings indicate that the actions of glucocorticoids
on memory consolidation also involve intriguing rapid signal-
ing interactions with the endocannabinoid system
(Campolongo et al. 2009). Endogenous ligands for cannabi-
noid receptors, endocannabinoids, are synthesized on demand
from lipid precursors in the postsynaptic membrane, and serve
as retrograde messengers at both excitatory and inhibitory
neurotransmission (Kano 2014) and therefore are key players
in fine-tuning neural activity (Ohno-Shosaku and Kano 2014).

The endocannabinoid system is closely linked to the glucocor-
ticoid stress system (Hill et al. 2010; Atsak et al. 2012b;Morena
et al. 2015), and emerged as a key modulator of the stress
response (Hill et al. 2010; Morena et al. 2015), emotion regu-
lation (Evanson et al. 2010; Marco and Laviola 2012) and emo-
tional memory (Morena et al. 2016). Most importantly, it was
found that a cannabinoid type-1 (CB1) receptor antagonist ad-
ministered into the basolateral amygdala blocks the ability of
glucocorticoids to facilitate aversive memory consolidation
(Campolongo et al. 2009; Atsak et al. 2015). Acute glucocorti-
coid administration or training on an emotionally arousing task
rapidly increases endocannabinoid levels in the amygdala as
well as in other brain regions such as the hippocampus and
prefrontal cortex (Adams et al. 2003; Hill et al. 2010; Morena
et al. 2014). The findings suggest that glucocorticoids might
bind to a membrane-located receptor that activates a G
protein-coupled signaling cascade inducing endocannabinoid
synthesis (Di et al. 2016). Endocannabinoid ligands then could
diffuse and bind to presynaptic CB1 receptors. What the
endocannabinoids will do next is unclear at this time.
Possibly, endocannabinoids target local GABAergic terminals
to inhibit GABA release onto noradrenergic terminals (Di et al.
2016), thus increasing the local release of noradrenaline
(Fig. 2).

Retrieval

Memory retrieval refers to the mental process of
recollecting information from the past. In contrast to the
enhancing effects of glucocorticoids on memory consolida-
tion, stress exposure or glucocorticoid administration to rats
or mice shortly before retention testing impairs the retrieval
of memory (de Quervain et al. 1998). Although the vast
majority of studies have investigated the effects of stress
and glucocorticoids on the retrieval of hippocampus-
dependent forms of memory in contextual fear conditioning
and spatial water-maze tasks, some animal model studies
have shown that stress exposure or glucocorticoid adminis-
tration before retention testing also impairs the retrieval of
cortex-dependent recognition memory (Barsegyan et al.
2015) and striatum-dependent stimulus-response associa-
tions (Atsak et al. 2016). These temporary effects of gluco-
corticoids on memory retrieval impairment (the effects dis-
sipate when glucocorticoid levels have returned to baseline)
are rapidly induced and do not seem to depend on gene
transcription (Sajadi et al. 2006) and might selectively de-
pend on the membrane GR (Chauveau et al. 2010) and being
mediated via non-genomic actions (Roozendaal et al. 2004).
Glucocorticoid-induced impairment of memory retrieval
may help to suppress behaviors that are no more relevant
or even maladaptive and a more opportune coping response
is required (de Kloet et al. 1999). This mechanism is
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especially important in situations when the organism is
forced to adapt to a changed environment.

Highly comparable to these findings in animal models,
stress exposure or glucocorticoid administration also impairs
retrieval processes in humans. A single administration of cor-
tisone (at a dose resulting in high physiological cortisol levels)
1 h before retention testing impaired the recall of words
learned 24 h earlier (de Quervain et al. 2000). Moreover, in-
creased cortisol levels due to psychological stress have also
been shown to impair declarative memory retrieval (Domes
et al. 2004; Kuhlmann et al. 2005b; Buchanan et al. 2006;
Shields et al. 2017). Glucocorticoid effects on memory re-
trieval are highly comparable to those seen in studies investi-
gating memory consolidation in that the effects depend on

emotional arousal. Specifically, it has been shown in studies
in humans that the retrieval of emotionally arousing informa-
tion is also particularly sensitive to impairment by glucocorti-
coids (de Quervain et al. 2000; Wolf et al. 2001; Buss et al.
2004; Het et al. 2005; Kuhlmann et al. 2005a, b; Smeets et al.
2005; Buchanan et al. 2006; Kuhlmann and Wolf 2006b; de
Quervain et al. 2007; Smeets et al. 2008; Schwabe et al. 2009;
Tollenaar et al. 2009). Glucocorticoid effects on memory re-
trieval also depend critically on noradrenergic activity within
the brain (de Quervain et al. 2007; Schwabe et al. 2009). The
influence of glucocorticoid–noradrenergic interactions on
memory retrieval was further shown to also depend on the
endocannabinoid system (Atsak et al. 2012a; Morena et al.
2015). Also comparable to memory consolidation, stress ef-
fects on memory retrieval are more prominent in men than in
women who use hormonal contraceptives (Kuhlmann and
Wolf 2005), suggesting possible interactions with sex hor-
mones (Merz and Wolf 2017).

Extinction

Extinction is a process in which conditioned responses to a
stimulus previously paired with an aversive event diminish if
the conditioned stimulus is presented repeatedly without the
reinforcing stimulus (Quirk and Mueller 2008). Like other
forms of learning, extinction learning is followed by a consol-
idation phase. Whereas the consolidation of extinction mem-
ory and that of new memory show partially distinct molecular
and neuroanatomical profiles (e.g., different role of the pre-
frontal cortex) (Milad and Quirk 2012), glucocorticoids seem
to play a similar role in both. Animal models have shown that
glucocorticoid administration enhances the consolidation of
extinction memory (Barrett and Gonzalez-Lima 2004; Cai
et al. 2006; Yang et al. 2006; Blundell et al. 2011) whereas a
suppression of glucocorticoid signaling impairs extinction
consolidation (Bohus and Lissak 1968; Barrett and
Gonzalez-Lima 2004; Yang et al. 2006; Blundell et al. 2011;
Clay et al. 2011). More specifically, glucocorticoids adminis-
tered either before or after extinction learning modify extinc-
tion processes of several types of fear memory, including au-
ditory fear conditioning (Barrett and Gonzalez-Lima 2004),
contextual fear conditioning (Cai et al. 2006; Blundell et al.
2011) and fear-potentiated startle (Yang et al. 2006), and in the
predator stress paradigm (Clay et al. 2011). Furthermore, di-
rect administration of the GR agonist dexamethasone into the
amygdala prior to extinction training was found to enhance
extinction memory (Yang et al. 2006).

Current theories of extinction learning postulate that during
extinction a safety memory trace is established since the stim-
ulus is no longer followed by an aversive event. The ‘compe-
tition’ between the original fear memory trace and the safety
memory trace acquired during extinction can explain the well-
documented recovery phenomena of spontaneous recovery,

Fig. 2 Role of the endocannabinoid system in regulating glucocorticoid
effects on memory consolidation. Glucocorticoids, released during
emotionally arousing situations, bind to a membrane-bound GR, and
activate the intracellular cAMP/PKA signaling cascade. This triggers the
release of endocannabinoids, particularly anandamide (AEA). Anandamide
then activates CB1 receptors on GABAergic interneurons and thereby
inhibits GABA release. This subsequently disinhibits norepinephrine
(NE) release and increases the excitability of pyramidal neurons within
the basolateral amygdala. This overall increases the sensitivity of
basolateral amygdala neurons to the effects of norepinephrine and results
in an increased activation of the cAMP (cyclic adenosine monophosphate) /
PKA (protein kinase A) pathway and phosphorylation of the transcription
factor CREB (cAMP response-element binding) protein. These stress
hormone effects in the basolateral amygdala are required for enhancement
of memory for emotionally arousing experiences by influencing
information storage processes in other brain regions. Adapted from Atsak
et al., Neuropsychopharmacology, 2015
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reinstatement, and renewal (Vervliet et al. 2013). Extinction is
thought to be more context dependent than the originally ac-
quired fear memory (Bouton et al. 2006). In the laboratory,
this context dependency can be studied using a renewal para-
digm where acquisition takes place in context A, extinction
learning in context B, and extinction retrieval is tested in both
contexts A and B. Typically, the return of fear is stronger in the
acquisition context (A). This mechanism might underlie the
return of fear after a (seemingly) successful extinction-based
therapy (e.g., when a patient again encounters a spider at
home). In a series of human studies, the impact of stress on
extinction and renewal was investigated using a contextual
fear conditioning paradigm originally developed by Milad
and colleagues (Milad et al. 2007). Stress (the Socially
Evaluated Cold Pressor Test) induced 25–30 min before ex-
tinction learning enhanced the consolidation of extinction
memory and made it less context dependent as evident by a
reduced renewal effect (Meir Drexler et al. 2018) (Fig. 3). In
contrast, stress induced immediately after extinction learning
made the extinction memory more context dependent
(Hamacher-Dang et al. 2015). Thus, from a clinical perspec-
tive, stress induction or cortisol administration should occur
before extinction training in order to create a stronger and less
context-dependent extinction memory trace. In a recent phar-
macological functional MRI (fMRI) study (Merz et al. 2018),
cortisol administered before extinction diminished activation
of the amygdala-hippocampal neural network at the beginning
of extinction and enhanced functional connectivity of the an-
terior parahippocampal gyrus with the ventromedial prefrontal
cortex (vmPFC), a brain region crucially involved in

extinction processes (Milad and Quirk 2002). These network
alterations may underlie the blocking effects of cortisol on the
retrieval of the initial fear memory and its combination with
the beneficial effects on the consolidation of fear extinction
memory (Nakataki et al. 2017).

The long-term efficacy of extinction-based therapies is not
only determined by the initial extinction success, but also by
the ability to retrieve the extinction memory when encounter-
ing the previously feared stimulus again (e.g., when meeting a
spider at home in the cellar) (Quirk and Mueller 2008). In this
situation, the initial fear memory trace and the inhibitory ex-
tinction memory trace have to compete and the ‘winner’ de-
termines the actual behavioral response. Hence, the question
arises how stress or glucocorticoids influence the retrieval of
extinction memory. Two recent studies provided first evidence
that acute stress can impair extinction retrieval in humans. In
one study, a predictive learning task was used (Hamacher-
Dang et al. 2013) while the other study used a classical fear
conditioning paradigm (Raio et al. 2014). In both studies,
stress was associated with a return of the originally learned
behavior (or emotion). Supporting findings have been obtain-
ed in rodent models (Deschaux et al. 2013). However, con-
flicting findings have been reported as well (Merz et al. 2014).
Similar findings have been reported after pharmacological
glucocorticoid administration. In two independent fMRI stud-
ies, it was reported that cortisol administered before extinction
recall testing induced a return of fear of the previously
extinguished response (Kinner et al. 2016; Kinner et al.
2018). This was associated with reduced activity of the
vmPFC (Kinner et al. 2016) and enhanced signaling in the
amygdala (Kinner et al. 2018). Interestingly, this effect was
absent in women using hormonal contraceptives, again
pinpointing to a modulatory influence of sex hormones.

Taken together, the laboratory findings obtained so far sug-
gest that glucocorticoids can facilitate extinction when given
before extinction training (in line with the model proposed
above (Fig. 1)). In contrast, elevated glucocorticoid concen-
trations at times of extinction retrieval might cause a return of
fear by impairing extinction recall.

Clinical implications

Based on the evidence from basic animal model and human
studies reviewed above, glucocorticoids could be adminis-
tered at different time points to reduce fear in clinical condi-
tions. Glucocorticoids could be administered to diminish the
retrieval of aversive memories, thereby reducing the expres-
sion of fear, such as of reexperiencing the traumatic event in
PTSD. It is important to note that a reduced recall of aversive
memories may also support fear extinction: Experiencing re-
duced fear in otherwise fearful situations is likely to support
fear extinction processes by promoting non-fearful, corrective

Fig. 3 Stress before extinction learning reduced the return of fear in a
renewal paradigm. The renewal test compared the mean skin conductance
response (SCR) to the conditioned stimuli (CS+) in both contexts A
(acquisition context) and B (extinction context). The control group (left
panel; n = 20) showed renewal of the extinguished fear response (**
P < .001: the response to the previously extinguished CS+ in context A
is higher than in context B), the stress (socially evaluated cold pressor test
25–30 min before extinction learning) group (right panel; n = 20) showed
no renewal. These results suggest a stronger and more generalized
extinction memory in the stress group. Error bars represent SEM and
thus between-subject variance. CS+, conditioned stimulus. Adapted
from (Meir Drexler et al. 2018)
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experiences (de Quervain et al. 2009). Further, glucocorticoid
administration could be used to support the consolidation of
extinction memories in patients who undergo extinction-based
psychotherapy. These glucocorticoid signaling-based inter-
vention strategies are illustrated in Fig. 1. This figure also
illustrates the importance of the context (i.e. with or without
concurrent extinction training), timing and duration of gluco-
corticoid administration (for a comprehensive review see Joëls
et al. (2012). We now review clinical studies that used gluco-
corticoid signaling-based interventions to prevent or treat fear-
related disorders (Table 1).

PTSD

In contrast to what could be expected from a stress-related
disorder, PTSD is not characterized by higher glucocorticoid
levels (Meewisse et al. 2007), but rather by an enhanced HPA-
axis feedback (Yehuda 2002; Pitman et al. 2012), often
resulting in lower circulating cortisol levels than found in
healthy people (Yehuda et al. 1991; Meewisse et al. 2007).
Low cortisol levels depend on several factors, including gen-
der and type and onset of trauma (Meewisse et al. 2007) and
may contribute to a hyper-retrieval of aversive memories, pro-
moting reexperiencing symptoms of PTSD (de Quervain et al.
2009). In contrast, low glucocorticoid signaling at the time of
initial traumatic memory formation should, at least theoreti-
cally, be favorable, considering the enhancing properties of
glucocorticoids with regard to memory consolidation.
Therefore, GR antagonists could be used to block the initial
consolidation of a traumatic experience, serving as a second-
ary prevention of PTSD. However, so far there are no clinical
data available regarding this approach.

Another approach aimed at diminishing symptoms of
PTSD by reducing the retrieval of aversivememories has been
investigated by two studies. The first study was a double-
blind, placebo-controlled, cross-over study in three patients.
This study reported that low-dose cortisol treatment (10 mg
per day for 1 month) diminished re-experiencing symptoms,
such as daytime recollections, intrusions, and nightmares,
even beyond the treatment period (Aerni et al. 2004). The
second study, which used a similar design but in a larger group
of patients receiving various psychotropic medications (in-
cluding serotonin- or noradrenaline-reuptake inhibitors), did
not find beneficial effects of cortisol treatment (10 mg or
30 mg per day) on PTSD symptoms (Ludascher et al. 2015).
If memory retrieval is reduced during the first days or weeks
after a traumatic event, it may also help to counteract the
formation of an overly strong memory trace: By inhibiting
memory retrieval, cortisol may partly interrupt the vicious
cycle of spontaneous retrieving, re-experiencing and
reconsolidating traumatic memories in PTSD and, thereby,
promote forgetting, a spontaneous process that occurs when
memory is not reactivated. Furthermore, high cortisol levels at

the time of confrontation with an aversive cue may facilitate
the extinction of aversive memory. Two mechanisms may
contribute to this facilitation: (i) because of the cortisol-
induced reduction of memory retrieval, an aversive cue is no
longer followed by the usual aversive memory retrieval and
related clinical symptoms but, instead, becomes associated
with a non-aversive experience, which is stored as extinction
memory; (ii) glucocorticoids can facilitate the consolidation of
memory of these corrective experiences.

Clinical trials investigating the effects of glucocorticoid
treatment on extinction memory have found that such treat-
ment indeed facilitates extinction processes (Aerni et al. 2004;
Suris et al. 2010; Yehuda et al. 2010; Yehuda et al. 2015). In
particular, a recent randomized, double-blind, placebo-
controlled trial in 24 PTSD veterans reported that the admin-
istration of cortisol (30 mg) combined with exposure treat-
ment improved treatment retention and outcome (Yehuda
et al. 2015). Moreover, a significant treatment condition by
responder status interaction for glucocorticoid sensitivity indi-
cated that responders to cortisol augmentation had the highest
pre-treatment glucocorticoid sensitivity that diminished over
the course of treatment (Yehuda et al. 2015).

Several studies have used high-dose glucocorticoid admin-
istration for a longer time period (typically several days) in the
aftermath of a traumatic event. Here, glucocorticoids likely
affected several memory phases. These studies indicate that
prolonged treatment with high doses of cortisol that started
within 12 h after trauma reduces the risk for the development
of later PTSD (Schelling et al. 2001, 2004; Weis et al. 2006;
Delahanty et al. 2013). A potential mechanism might be that
high doses of glucocorticoids—due to the inverted-U-shaped
dose-response relationship for the effects of glucocorticoids
on consolidation—may have resulted in an impairment of
consolidation (Roozendaal et al. 1999b), and/or by a reduction
of the retrieval of the traumatic memory and thereby
interrupting the vicious cycle of retrieving, re-experiencing
and reconsolidating aversive memories (de Quervain et al.
2009). These effects of glucocorticoid administration on re-
ducing the risk for the development of PTSD are consistent
with the findings of other studies indicating that the risk for
PTSD is decreased by higher excretion of endogenous cortisol
in the first hours after a traumatic event (McFarlane et al.
1997; Yehuda et al. 1998; Delahanty et al. 2000).

Recently, two systematic reviews suggested that the
prolonged administration of glucocorticoids after a traumatic
event is the most effective pharmacological intervention cur-
rently available for the prevention of PTSD (Amos et al. 2014;
Sijbrandij et al. 2015). One review included seven randomized
controlled trials investigating the efficacy of several pharma-
cological treatments (4 with cortisol, 3 with the beta-
adrenergic receptor antagonist propranolol, one with the se-
lective serotonin-reuptake inhibitor escitalopram and one with
the benzodiazepine temazepam). The authors found that
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cortisol, but none of the other drugs, showed efficacy in re-
ducing the risk for PTSD in adult patients (Amos et al. 2014).
The other review included 5 placebo-controlled studies with
cortisol and reported a large effect of cortisol in preventing
PTSD (Sijbrandij et al. 2015). Currently, there are several
ongoing trials investigating the effects of cortisol administra-
tion on the development of PTSD (NCT00855270 https://
c l in ical t r ia ls .gov/ct2/show/NCT00855270?term=
NCT00855270&rank=1) , (NCT02402114 ht tps : / /
c l inical t r ia ls .gov/ct2/show/NCT02402114?term=
NCT02402114&rank=1) and on fear extinction in veterans
with PTSD (NCT00674570 https://clinicaltrials.gov/ct2/
show/NCT00674570?term=NCT00674570&rank=1).

Human genetic and epigenetic studies have found several
alterations in the glucocorticoid system associated with PTSD
risk. NR3C1 alterations. The BclI polymorphism, a C to G
nucleotide change associated with receptor hypersensitivity to
glucocorticoids and lower plasma cortisol levels, is a single
nucleotide polymorphism of the GR gene (NR3C1, nuclear
receptor subfamily 3, group C, member 1 (van Rossum et al.
2003). Studies in healthy humans have indicated that GG car-
riers (as compared to GC and CC carriers) of the BclI polymor-
phism show enhanced emotional memory (Ackermann et al.
2013), and increased incidence of traumatic memories in pa-
tients who underwent intensive care therapy (Hauer et al.
2011). Furthermore, increased expression of NR3C1 in periph-
eral blood mononuclear cells has been found to be related to
higher PTSD risk, which is in line with the enhanced GR feed-
back found in PTSD patients (van Zuiden et al. 2011).
Moreover, there is evidence that these alterations are partly
epigenetically controlled. Two recent studies found that meth-
ylation of theNR3C1 promoter is inversely relatedwith lifetime
PTSD risk (Labonte et al. 2014; Yehuda et al. 2014). Further, a
study in genocide survivors reported that decreased methyla-
tion at the NGFIA (nerve growth factor-induced protein A)
binding site of the NR3C1 promoter is related with increased
traumatic memories and increased PTSD risk (Vukojevic et al.
2014). In support of the idea that methylation level of the GR
gene might regulate memory processes, this study also found
that decreasedmethylation at theNGFIA binding site of healthy
individuals was associated with enhanced picture recognition
memory and related brain activity. Together, these studies point
to an epigenetic and genetic link between the predisposition to
form strong aversive memories and the risk for PTSD. FKBP5
alterations. FKPB5 is known to act as a co-chaperone that
modulates GR activity (Zannas et al. 2016). Common alleles
of FKPB5 have been related to differences in GR sensitivity,
PTSD risk, and the incidence of intrusive memories of aversive
photographs (Mehta et al. 2011; Cheung and Bryant 2015).
Furthermore, allele-specific demethylation of FKBP5 has been
reported to mediate gene–childhood trauma interactions.
Specifically, demethylation of FKBP5 was associated with in-
creased stress-dependent gene transcription, followed by a

dysregulation of the HPA axis and cortisol levels (Klengel
et al. 2013). FKBP5 alleles may also influence exposure-
based psychotherapy in PTSD (Wilker et al. 2014), and
FKBP5 allele-specific alterations in methylation have been as-
sociated with differential responses to psychological treatments
for anxiety disorders (Roberts et al. 2015). Taken together, the
findings indicating that genetic and epigenetic variations in the
glucocorticoid system are associated with aversive and trau-
matic memory, the risk for PTSD and treatment response, help
to better understand the basis of individual differences in risk or
resilience for PTSD. It is important to note, however, that com-
mon genetic polymorphisms, which typically have small effect
sizes, cannot be used for diagnostic and/or personalized treat-
ment purposes. More research is needed to evaluate whether
rare genetic variants or specific methylation events might be
better suited for such purposes.

With regard to the importance of the endocannabinoid sys-
tem, which as indicated interacts with glucocorticoids in reg-
ulating emotional memory (Campolongo et al. 2009), two
studies have suggested that a polymorphism (rs1049353) of
the CB1 receptor gene (CNR1) is associated with PTSD risk
(Lu et al. 2008; Mota et al. 2015). Furthermore, stimulation of
CB1 receptors promotes memory extinction (for review, see
de Bitencourt et al. (2013), and first clinical evidence suggests
that cannabinoids might be useful in the treatment of PTSD
(Roitman et al. 2014; Jetly et al. 2015). Thus, there is now
evidence from independent studies indicating that the gluco-
corticoid and endocannabinoid systems are involved in extinc-
tion memory and that these two systems might be promising
targets for pharmacological intervention aimed at the preven-
tion and/or treatment of PTSD. In particular, the evidence
discussed above indicating that these two systems crucially
interact suggests that considering both systems together might
bear a large clinical potential. In line with this idea, both sys-
tems have been found altered in PTSD (Yehuda 2002;
Neumeister et al. 2013). Most interestingly, the combined
analysis of glucocorticoid and endocannabinoid markers was
shown to have a higher predictive value for classifying PTSD
than the individual analyses (Neumeister et al. 2013).
Therefore, pharmacological interventions considering both
glucocorticoid- and cannabinoid signalingmight be promising
and should be further investigated in animal and human
models of fear learning and extinction to inform future clinical
studies (de Bitencourt et al. 2013).

Phobias

Glucocorticoid effects on aversive memory processing may
not be restricted to traumatic memories in PTSD, but may also
include fear memories in phobia. Several studies have inves-
tigated the effects of glucocorticoids on fear symptoms in
phobic patients. In a randomized controlled trial in 40 patients
with social phobia, a single oral dose of cortisone (25 mg) was
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given 1 h before patients were exposed to the Trier Social
Stress Test. As compared to placebo, glucocorticoid treatment
significantly reduced stress-induced fear, possibly by affecting
memory retrieval processes (Soravia et al. 2006). Importantly,
in placebo-treated subjects, the stress-induced release of cor-
tisol was negatively correlated with fear ratings, suggesting
that endogenously released cortisol might buffer or counteract
fear symptoms in patients with social phobia (Soravia et al.
2006). In another randomized, controlled trial with 20 patients
with spider phobia, 10 mg oral cortisol 1 h before the repeated
exposure to spider photographs resulted in a gradual reduction
of stimulus-induced fear (Soravia et al. 2006). This fear reduc-
tion was observed even 2 days after the last drug administra-
tion, indicating that glucocorticoids might also have facilitated
the extinction of phobic fear.

Because fear extinction is the basis of successful exposure
therapy in phobic patients, glucocorticoids might be suited to
support this process. One randomized, controlled trial in pa-
tients with fear of heights examined whether the administration
of glucocorticoids before exposure therapy might enhance
treatment outcome (de Quervain et al. 2011). Cortisol
(20 mg) or placebo was administered to 40 patients 1 h before
each of three virtual-reality exposure sessions. As compared to
placebo, cortisol led to a significantly greater reduction of fear
of heights at posttreatment and at follow-up (Fig. 4). Moreover,
patients receiving the glucocorticoid showed a significantly
smaller exposure-induced increase in skin conductance level
at follow-up (de Quervain et al. 2011). Another study in sub-
jects with fear of spiders found that the combined administra-
tion of cortisol and group exposure therapy enhanced treatment
outcome (Soravia et al. 2014). Since these studies indicate that
the administration of cortisol has beneficial effects on exposure

therapy, also endogenous differences in cortisol levels may
have an impact on the outcome of this therapy. This possibility
was tested in a study investigating if circadian fluctuations in
endogenous cortisol levels affect treatment outcome (Lass-
Hennemann and Michael 2014). Patients with fear of spiders
who were treated with a single exposure session early in the
morning (when cortisol levels are high) showed a significantly
greater suppression of fear after treatment than did patients who
were treated in the evening (when cortisol levels are low).
These effects persisted even at a 3-months follow-up. In line
with these findings, a further study showed that time-of-the
day-dependent differences in the outcome of exposure therapy
are mediated by differences in cortisol levels (Meuret et al.
2016). In conclusion, cortisol is likely to reduce symptoms of
phobic fear by reducing aversive memory retrieval and enhanc-
ing memory extinction. Therefore, glucocorticoids seem to be
well-suited to be administered before extinction-based expo-
sure therapy to support treatment outcome.

Addiction and other psychiatric disorders

The beneficial effects of glucocorticoids may also expand to
other psychopathologies, in which memory, either in symp-
tomatology or therapy, plays a role. In drug addiction, for
example, memory plays a role in the storage of associations
that provide the powerful incentives for drug taking that pro-
duce cravings (Robinson and Berridge 2000; Kelley 2004;
Tiffany and Wray 2012; Preller et al. 2013). A recent random-
ized, controlled trial reported that a single administration of
cortisol (20 mg) reduced craving in patients addicted to low-
dose heroin (Walter et al. 2015). It is possible that cortisol
might have reduced craving by reducing retrieval of addiction

Fig. 4 Glucocorticoids enhance extinction-based psychotherapy. a VR
exposure to fear of heights. b Adding cortisol to VR exposure results in
reductions of self-reported fear of heights (measured with Acrophobia
Questionnaire, range 0–120) at posttreatment and at follow-up. VR
exposure took place on 3 treatment sessions between pretreatment and

posttreatment assessment. Cortisol (20 mg) was administered 1 h before
each VR exposure session. Values are depicted as mean and SEM.
Asterisks (*, P < 0.05) indicate significant differences between the
placebo- and cortisol group at a certain time point. Adapted from (de
Quervain et al. 2011)
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memory. However, it has been also reported that the adminis-
tration of the GR antagonist mifepristone for 1 week decreases
alcohol seeking in alcohol-dependent individuals
(Vendruscolo et al. 2015).

Furthermore, glucocorticoids might be tested in other psy-
chiatric disorders, in which extinction-based exposure therapy
is used, such as in obsessive-compulsive disorder. In this dis-
order, fear extinction seems to be impaired, which might ex-
plain that exposure therapy is difficult and less successful than
in phobias (Milad et al. 2013). Therefore, a pharmacological
intervention supporting the outcome of exposure therapy of
obsessive-compulsive disorder would be highly welcome.

Conclusions and future perspectives

A wealth of studies has shown that glucocorticoids play a
critical role in influencing the consolidation, retrieval, and
extinction of emotional memories. Because these memory
processes are all highly relevant in the pathogenesis, mainte-
nance and treatment of fear-related disorders, the memory-
modulatory properties of glucocorticoids are of considerable
translational interest.

Many of the clinical trials reviewed above suggest that the
strategy to enhance extinction-based psychotherapy with a
timed glucocorticoid administration is a particularly promis-
ing approach to treat fear-related disorders. Glucocorticoids
may unfold synergistic actions that involve a weakening of
dysfunctional memories (through reduced memory retrieval)
and a strengthening of psychotherapy-related memories of
safety (through enhanced memory extinction). Moreover, sev-
eral studies have indicated that glucocorticoids may be helpful
in preventing the development of PTSDwhen administered in
high doses in the aftermath of a traumatic event.

it is important to note that the existing evidence for the
usefulness of glucocorticoids in the prevention and treatment
of fear-related disorders comes from rather small proof-of-
concept studies. Therefore, large randomized, controlled clin-
ical trials are urgently needed. Furthermore, several open
questions should be addressed in future basic and clinical
studies. For example, it is still not known what the optimal
dosage, time point and duration of glucocorticoid treatment
are. Also, safety aspects of such treatments must be assessed
in detail. Furthermore, the effects of glucocorticoid adminis-
tration on context dependency and renewal of exposure ther-
apy have not been investigated in clinical settings.

With regard to dosage, studies investigating PTSD-
protective effects of hydrocortisone treatment have used be-
tween 20 mg (low dose) and 100 mg (high dose) of cortisol/
day administered within 6–12 h after a traumatic event (low
dose up to 10 days, high dose 1 to 4 days) (Schelling et al.
2001, 2004; Weis et al. 2006; Zohar et al. 2011; Delahanty
et al. 2013). Studies in phobias used single or repeated (up to

4 times) administrations of low doses (10–25 mg) of cortisol
(Soravia et al. 2006; de Quervain et al. 2011; Soravia et al.
2014). With regard to safety, potential side effects of glucocor-
ticoids have to be considered. Side effects can typically occur
under moderate-to-high dose (30–100 mg) cortisol treatment
and the risk increases with prolonged administration or after
abrupt offset of such treatments due to suppression of the adre-
nal response (Stanbury and Graham 1998; Henzen et al. 2000).

It is of great interest to investigate if glucocorticoids have
beneficial effects also in other neuropsychiatric disorders, in
which memory plays a role in symptomatology or treatment,
such as obsessive-compulsive disorder. Further studies might
also want to search for epigenetic and genetic markers for
diagnostic and/or personalized treatment purposes.
Biologically based precision medicine in psychiatry is just
beginning to be adopted (Insel and Cuthbert 2015), but such
an approach might be indispensable for the identification of
patients who are most likely to respond to targeted treatments
(Ressler 2018). A recent systemic review provided prelimi-
nary evidence that pre-treatment biomarkers, including gluco-
corticoid sensitivity and metabolism, were able to predict the
outcome of psychotherapy of PTSD (Colvonen et al. 2017).
Future studies should therefore investigate whether patients
with HPA-axis alterations or dysfunctional glucocorticoid sig-
naling might particularly benefit from pharmacological gluco-
corticoid treatment. Furthermore, basic research might inves-
tigate new ways of modulating glucocorticoid signaling to
identify more-specific and safe glucocorticoid-related drugs.
To conclude, the field of stress and memory research is one of
the very few areas in neuroscience where knowledge gained
from basic studies have translated into direct clinical applica-
tions and it will hopefully continue to do so in the future.
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