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Glucocorticoids are secreted following exposure to stressful events. Their modulating role on memory
reconsolidation, a post-retrieval process of re-stabilization, has been investigated only recently, at times
with conflicting results. The goal of this review is twofold. First, to establish the modulating role of glu-
cocorticoids on memory reconsolidation. Second, to point the potential factors and confounds that might
explain the seemingly paradoxical findings. Here we review recent pharmacological studies, conducted in
rodents and humans, which suggest a critical role of glucocorticoids in this post-retrieval process. In par-
ticular, the activation of glucocorticoid receptors in the amygdala and hippocampus is suggested to be
involved in emotional memories reconsolidation, pointing to a similarity between post-retrieval recon-
solidation and initial memory consolidation. In addition, based on the general reconsolidation literature,
we suggest several factors that might play a role in determining the direction and strength of the recon-
solidation effect following glucocorticoids treatment: memory-related factors, manipulation-related fac-
tors, and individual differences. We conclude that only when taking these additional factors into account
can the paradox be resolved.

� 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Glucocorticoids (GCs; cortisol in humans, corticosterone in
rodents) are secreted from the adrenal cortex following the activa-
tion of the hypothalamus-pituitary-adrenal (HPA) axis. GCs reach
peak concentrations after an exposure to a stressful event. Follow-
ing stress exposure, they promote an adaptive response to environ-
mental challenges by modulating physiological and behavioral
processes, such as learning and memory (Joels, Pu, Wiegert, Oitzl,
& Krugers, 2006). While GCs enhance the consolidation of memory,
especially for emotional stimuli or in arousing contexts (Maroun &
Akirav, 2008; Roozendaal, 2000), they impair the retrieval of infor-
mation that was previously acquired (Buchanan, Tranel, & Adolphs,
2006; Wolf, 2009). In other words, GCs promote a ‘memory consol-
idation mode’ on the expense of retrieval (Joels et al., 2006;
Roozendaal, 2000).

The timing of stress exposure/GCs secretion is, therefore, a
major factor determining the direction of the effect (i.e. enhance-
ment or impairment) on the memory process. Yet additional
learning- and stress-related factors interact in affecting the mem-
ory process (Sandi & Pinelo-Nava, 2007). Among them are the
memory type, stress intensity, source and duration. For instance,
fear memories are more strongly consolidated than neutral mem-
ories. This results from GCs and noradrenaline interaction in the
basolateral amygdala (BLA) following an exposure to a stressful
event (Roozendaal, 2000; Roozendaal, Portillo-Marquez, &
Mcgaugh, 1996). Stress intensity has different effects on various
memory types. For fear memory consolidation, a linear or linear-
asymptotic dose-response curve was suggested (i.e. stronger mem-
ories following higher GCs levels) (Sandi & Pinelo-Nava, 2007). For
spatial memory, in contrast, an inverted U-shaped curved was
demonstrated, with moderately elevated GCs levels acting as
memory facilitators while too high or too low levels impair it
(Joels, 2006). The source and duration of stress also play a role.
Whereas intrinsic stressor (i.e. related to the cognitive task) may
enhance memory consolidation, the effects of extrinsic stress (i.e.
unrelated to the task) are more heterogeneous (Sandi & Pinelo-
Nava, 2007). Moreover, while acute stress may have various effects
on memory, chronic stress is likely to impair it (McEwen, 2004;
Sapolsky, 1999).

In the traditional memory research, memory consolidation was
thought to be a one-time event. According to this view, after an ini-
tial fragile period the memory trace becomes stable (McGaugh,
1966). Yet already in the late 1960s, Misanin, Miller, and Lewis
(1968) challenged this idea, suggesting that retrieval can reactivate
the memory, rendering it fragile again. The post-retrieval lability
period, later demonstrated to last up to 6 h after retrieval (Kindt,
Soeter, & Vervliet, 2009; Schiller et al., 2010), was suggested to
serve as an adaptive update mechanism (Alberini, 2011;
Rodriguez-Ortiz, De, Gutierrez, & Bermudez-Rattoni, 2005; Sara,
2000). In the last fifteen years, various pharmacological agents
and behavioral manipulations have been found to affect reacti-
vated memories, thereby revealing the mechanisms mediating
the reconsolidation of memory. For instance, Nader, Schafe, and
Fig. 1. The time-dependent effects of glucocorticoids (GCs) on memory processes. Conso
arrow indicates overall impairing effects. Reconsolidation: both upwards and downward
LeDoux (2000) demonstrated that memory reconsolidation is a
protein-synthesis dependent process, while Kindt et al. (2009)
revealed that emotional memory reconsolidation depends on nora-
drenergic activity. These findings suggest a similarity between
reconsolidation following retrieval and initial consolidation, a
protein-synthesis process (Kandel, 2001) that benefits from nora-
drenergic activity (Roozendaal, Okuda, Van der Zee, & McGaugh,
2006).

Even though timing plays a critical role in determining the
effect of stress and GCs on memory processes (see Fig. 1), GCs mod-
ulation of memory reconsolidation has been investigated only
recently. As reviewed by Akirav and Maroun (2013), the results
are often conflicting, as animal studies reported an impairing effect
of stress (Wang, Zhao, Ghitza, Li, & Lu, 2008), GCs administration
(Yang et al., 2013) but also GCs antagonists (Pitman et al., 2011)
on reactivated memories. Human studies, usually involving stress
induction as opposed to a pharmacological intervention, demon-
strate either an impairing (Schwabe & Wolf, 2010; Zhao, Zhang,
Shi, Epstein, & Lu, 2009) or enhancing (Bos, Schuijer, Lodestijn,
Beckers, & Kindt, 2014; Coccoz, Maldonado, & Delorenzi, 2011;
Coccoz, Sandoval, Stehberg, & Delorenzi, 2013) effect of stress on
memory reconsolidation, with conflicting results with regard to
the susceptibility of strong emotional memories. Others (Wood
et al., 2015) reported no effect. This is not surprising, as GCs mod-
ulation of learning and memory processes depends on additional
factors other than timing of intervention (e.g. post-retrieval) alone
(Sandi & Pinelo-Nava, 2007). Yet while the literature offers a
clearer understanding of the way some factors interact in modulat-
ing memory consolidation (Joels, 2006) and retrieval (Buchanan &
Lovallo, 2001), this is not the case for the emerging field of recon-
solidation. In this field, conflicting results are sometimes regarded
as a paradox or, more often, are accepted without a more thorough
explanation. The goal of this review is thus twofold. First, to estab-
lish the modulating role of GCs for memory reconsolidation. Sec-
ond, to point to potential factors (and possible confounds) that
might interact in determining these effects.

To achieve this, here we review studies that investigated GCs
effects on the reconsolidation of memories. The review is limited
to pharmacological studies only. As opposed to stress induction,
which leads to the secretion of GCs and additional stress modula-
tors, such as noradrenaline (Joels et al., 2006), pharmacological
manipulation allows to focus on the GCs system and to determine
the role of its specific receptors. Most of the studies presented here
are rodent studies, yet the translational and clinical value of these
studies is discussed by presenting data from the (limited) human
literature, including patients. Aversive memories are the focus of
the majority of the studies we present, but appetitive memories
are presented when possible. These findings are discussed and
compared to the broader literature on memory reconsolidation.
2. Glucocorticoid involvement in memory reconsolidation

GCs are lipophilic and therefore easily enter the brain (McEwen,
Weiss, & Schwartz, 1968) where their activation is mediated by
lidation: upwards arrow indicates overall enhancing effects. Retrieval: downwards
s arrow represents conflicting results.
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two receptors types: mineralocorticoid (MR) and glucocorticoid
(GR) receptors. The two receptor types differ in affinity and distri-
bution (Joels, 2006). The MR are of higher affinity, mostly saturated
under basal conditions. They are mainly present in limbic areas
and mediate the initial response to stress, such as information
appraisal and response selection (Lupien & McEwen, 1997; Oitzl
& de Kloet, 1992). The GR are of lower affinity, thus becoming
occupied during the circadian peak or following stress exposure.
They contribute to the secession of the stress response by acting
on the HPA negative feedback loop, and mediate the beneficial
effects of stress on memory consolidation (de Kloet, Vreugdenhil,
Oitzl, & Joels, 1998). Both MR and GR were previously thought to
primarily exert their effects through gene expression. More recent
evidence, however, has shown that membrane-bound variants of
both receptor types can alter neuronal functions via non-genomic
pathways (i.e. within minutes) (Joels & Karst, 2012; Joels, Karst,
DeRijk, & de Kloet, 2008; Roozendaal et al., 2010).

In this section we present animal studies that used specific MR
and GR antagonists as reconsolidation manipulation, mainly post-
retrieval. This will allow to establish the involvement of GCs and
their specific receptor types in the process of memory
reconsolidation.

2.1. Mineralocorticoid receptors

Only two rodent studies used MR antagonist as post-retrieval
manipulation (Achterberg, Trezza, & Vanderschuren, 2014;
Vafaei, Pakdel, Nikzad, & Rashidy-Pour, 2011). However, the two
studies differed significantly in methodology. They examined tasks
of different emotionality (aversive vs. appetitive tasks), used differ-
ent learning paradigms, treatment doses and administration meth-
ods. They can thus provide an initial view on MR involvement in
memory reconsolidation.

Post-retrieval treatment with the MR antagonist spironolactone
was found to be inefficient in affecting memory reconsolidation.
This was the result for both aversive and appetitive memories,
using both systemic or intra-hippocampal injection with various
doses. Vafaei et al. (2011) investigated the effects of spironolactone
on memory reconsolidation using the inhibitory avoidance para-
digm, in which the animal learns to avoid a context that was pre-
viously associated with an aversive event (e.g. shock). This is, in
fact, an instrumental manifestation of the Pavlovian fear memory.
In this paradigm, re-entry to the previously dangerous compart-
ment is considered to be a retrieval session, and is then followed
by treatment. A thorough investigation of various doses adminis-
tered either systemically (5, 25, 50 or 100 mg/kg) or intra-
hippocampally (0.3, 3, 30 or 100 ng/ll) could not demonstrate
any effect on the reactivated memory. Similar findings were
reported by Achterberg et al. (2014) with an appetitive task of
social reward memory. In that study, post-retrieval systemic
administration of an intermediate dose of spironolactone (50 mg/
kg) could not affect the reactivated memory. Thus, both studies –
covering different tasks, doses and administration methods – sug-
gest that the MR antagonist spironolactone has no effect on reacti-
vated memories.

2.2. Glucocorticoid receptors

In contrast to the lack of effect of MR antagonism reported
above, several animal studies used the GR antagonist mifepristone
and suggested a key role of GR in the reconsolidation of emotional
memories.

Post-retrieval systemic injection of mifepristone (20–30 mg/kg)
was found to impair fear memory reconsolidation in the inhibitory
avoidance (Nikzad, Vafaei, Rashidy-Pour, & Haghighi, 2011;
Taubenfeld, Riceberg, New, & Alberini, 2009) and the cued fear con-
ditioning paradigms (Pitman et al., 2011). For instance, Pitman
et al. (2011) trained male and female rats to associate a cue with
a footshock. After the reactivation of the conditioned memory
(i.e. by an unreinforced re-exposure to the conditioned cue),
mifepristone was systemically administered to the animals. The
result was a reduction in the conditioned fear, as evident by a
shorter duration of freezing to the cue. This effect was relatively
long-lasting (lasting 10 days after treatment) and was dependent
on memory reactivation (i.e. was absent following mifepristone
administration alone), suggesting it resulted from a disruption to
the reconsolidation process. Comparable results were demon-
strated by Achterberg et al. (2014), who showed the impairing
effects of mifepristone on the reconsolidation of appetitive (i.e.
social reward) memories. In this study, however, only pre-
retrieval (as opposed to post-retrieval) administration led to an
effect, probably due to the longer duration of a reactivation session
in this paradigm relative to the fear conditioning based paradigms
(Achterberg et al., 2014). Other studies have demonstrated the crit-
ical role of GR in the BLA and hippocampus in the reconsolidation
of emotional memories. Two studies reported an impairment of
fear memory reconsolidation following post-retrieval mifepristone
administration to the BLA (Jin, Lu, Yang, Ma, & Li, 2007; Tronel &
Alberini, 2007). The effect was dose-dependent, seen only follow-
ing the administration of the higher mifepristone dose while the
lower concentrations produced no effect. A dose-dependent effect
was also demonstrated by Nikzad et al. (2011), where post-
retrieval mifepristone administration to the hippocampus led to
a more pronounced reduction of fear using the higher (3 ng/ll)
compared with the lower (0.3 ng/ll) dose.
2.3. Conclusion

Mifepristone, a GR antagonist, was demonstrated to be an effi-
cient pharmacological agent for the disruption of emotional mem-
ory reconsolidation. Although the literature provides only scarce
data on MR antagonists, the results suggest they do not play a crit-
ical role in this process. The involvement of GR activation in the
consolidation of newly acquired emotional memories is well estab-
lished (Roozendaal, 2000; Roozendaal & Mcgaugh, 1997). The
above studies suggest that GR activation, in the BLA and hippocam-
pus in particular, is also involved in the reconsolidation of emo-
tional memories after retrieval.
3. The paradox: the consequences of systemic glucocorticoid
administration

The studies reviewed in Section 2 suggest that GCs activation,
mediated by GR, is necessary for the reconsolidation of emotional
memories. These results point to a similarity between memory
reconsolidation and initial consolidation of memory (Roozendaal,
2000). Indeed, the rise in GCs concentrations following stress is
positively correlated with an improved memory consolidation in
both rodents (Cordero, Merino, & Sandi, 1998; Sandi, Loscertales,
& Guaza, 1997) and humans (Cahill, Gorski, & Le, 2003). Consolida-
tion enhancement can also be achieved by post-training GCs
administration, as demonstrated by Sandi et al. (1997). Blocking
GR activity, either pharmacologically in rats (Cordero & Sandi,
1998; Oitzl & de Kloet, 1992) or genetically in mice (Oitzl,
Reichardt, Joels, & de Kloet, 2001), prevents this enhancement of
initial consolidation. Following this, one could expect that pharma-
cological elevations of GCs (e.g. via systemic administration) fol-
lowing memory retrieval would lead to enhancement of memory
reconsolidation (i.e. the opposite effect of GR antagonists).

Several rodent studies have investigated the effects of systemic
corticosterone on memory reconsolidation (Abrari, Rashidy-Pour,



Table 1
Factors determining the strength/direction of an effect in reconsolidation studies.

Factor Findings (References)

Memory-
related
factors

Memory type
and strength

Reconsolidation effects were found for:
� Fear memories (Kindt et al., 2009;
Nader et al., 2000)

� Declarative memories (Schwabe et al.,
2012)

� Appetitive memories (Achterberg et al.,
2014; Corlett et al., 2013)

� Procedural memories (Walker et al.,
2003)

� Phobia and drug-related memories
(Soeter & Kindt, 2015; Zhao et al.,
2009)Mixed results:

� Well-learned instrumental memories
(Exton-McGuinness, Patton, Sacco, &
Lee, 2014; Hernandez & Kelley, 2004)

� Posttraumatic memories (Brunet et al.,
2008; Suris et al., 2010)

Memory age Mixed results:
� Recent memories might be more sus-
ceptible than older memories (Boccia,
Blake, Acosta, & Baratti, 2006; Suzuki
et al., 2004)

� Yet even older memories can be
affected (Debiec & LeDoux, 2004;
Wichert, Wolf, & Schwabe, 2011)

Manipulation-
related
factors

Reactivation � Availability of new information
(Rodriguez-Ortiz et al., 2005, 2008),
e.g. a prediction error (Almeida-Correa
& Amaral, 2014; Sevenster et al.,
2013) is required to destabilize the
memory. Contextual settings (Chan,
Leung, Westbrook, & McNally, 2010;
Meir Drexler et al., 2014; Monfils
et al., 2009) and length of retrieval
(Merlo et al., 2014) might play a role
in creating the ‘right’ amount of
novelty

� Timing of retrieval: pre-or post-treat-
ment (Achterberg et al., 2014; Kindt
et al., 2009)

Treatment � Pharmacological agents vs. behavioral
interventions (Kindt & Soeter, 2013)

� Dose-dependency of treatment (Jin
et al., 2007; Tronel & Alberini, 2007)

Individual differences � Trait anxiety (Soeter & Kindt, 2013)
� Sex and sex hormones (Meir Drexler
et al., 2015, 2016)
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Semnanian, & Fathollahi, 2008; Amiri et al., 2015; Cai, Blundell,
Han, Greene, & Powell, 2006; Yang et al., 2013). All studies used
a systemic administration of corticosterone (by an injection) with
doses ranging from 0.3 mg/kg to 10 mg/kg. The memory tasks were
all fear-dependent, using either the contextual fear conditioning
(i.e. a Pavlovian conditioning task) or the inhibitory avoidance
(i.e. instrumental conditioning) paradigm. In contrast to the argu-
ably expected enhancing effect of GCs activation, the studies
demonstrated an impairing effect of corticosterone administration
on memory reconsolidation. This effect was suggested to be dose-
dependent, resulting from post-retrieval intermediate (3 mg/kg)
corticosterone treatment and was absent following lower doses
(0.3–1 mg/kg) (Abrari et al., 2008; Amiri et al., 2015; Cai et al.,
2006). Conflicting results emerged following the use of higher cor-
ticosterone concentrations (10 mg/kg). While two reported an
impairment (Cai et al., 2006; Yang et al., 2013), one study (Abrari
et al., 2008) reported no effect.

The human literature on the consequences of GCs administra-
tion on memory reconsolidation is very limited. Sharing a similar
3-day reconsolidation design, two studies from our laboratory
investigated the effects of systemic cortisol administration on fear
memory reconsolidation in men (Meir Drexler, Merz, Hamacher-
Dang, Tegenthoff, & Wolf, 2015) and women (Meir Drexler, Merz,
Hamacher-Dang, & Wolf, 2016). On the first day, the participants
were conditioned to two stimuli that were associated with an elec-
tric shock. On the second day, one of the conditioned stimuli was
reactivated (i.e. presented but was not followed by a shock) after
hydrocortisone (30 mg) or placebo pill intake. The return of fear
after reinstatement shocks was assessed on the third day. The
results showed that in men, cortisol facilitated the reconsolidation
of the fear memory, but in women it had no effect.

Thus, while the GR antagonist-dependent memory impairment
(Section 2.2.) suggested that GCs are critical in the reconsolidation
of emotional memories, systemic administration of GCs led to con-
flicting results. In humans, oral administration of hydrocortisone
indeed enhanced reactivated fear memories in men, yet it had no
effect in women. In animals, corticosterone injection was demon-
strated to impair reactivated fear memories. This effect was sug-
gested to be dose-dependent. A more thorough investigation of
the methodological aspects of the reviewed studies might provide
an explanation to these seemingly paradoxical findings. This could
be a key step in portraying the potential factors that determine GCs
modulation of emotional memory reconsolidation.
4. Understanding glucocorticoids effects on memory
reconsolidation

The studies reviewed in the previous sections have demon-
strated impairing, enhancing or no effect of both GCs agonists
and antagonists on emotional memory reconsolidation. These con-
flicting results are not unique to memory reconsolidation, and are
also seen in memory consolidation studies (Akirav & Maroun,
2013). For instance, while acute GCs administration enhances
memory consolidation for spatial and contextual learning in vari-
ous appetitive and aversive tasks (Cordero et al., 1998;
Roozendaal, 2002), the use of GR antagonists can also enhance
memory consolidation. GR antagonists were found to improve
the performances of chronically corticosterone-exposed rats in a
contextual fear conditioning task (Conrad et al., 2004). In addition,
chronic (but not acute) administration of GR antagonists led to
facilitation of spatial memory processes in a dose-dependent man-
ner (Oitzl, Fluttert, Sutanto, & de Kloet, 1998). Clearly, the effects of
GCs on memory processes, reconsolidation included, cannot
be simply classified as impairing or enhancing (Akirav & Maroun,
2013), without taking additional factors into account.
Conflicting findings are thus not paradoxical, they are only
partially explained.

The general reconsolidation literature identifies multiple factors
that determine the strength and direction of a reconsolidation
effect. Among them are memory-related factors, manipulation-
related factors, and individual differences (Akirav & Maroun,
2013; Sandi & Pinelo-Nava, 2007; Soeter & Kindt, 2013) (see
Table 1). Their potential influence is discussed next with respect
to the current literature on GCs modulation of emotional memory
reconsolidation.
4.1. Memory-related factors

Memory-related factors include the type, age and strength of
the memory trace. Not all memories are equally susceptible to
post-retrieval manipulations. Therefore, a similar post-retrieval
manipulation may lead to different results, based on the nature
of the targeted memory (Akirav & Maroun, 2013). Fear memories
were shown to be susceptible to post-retrieval behavioral
(Monfils, Cowansage, Klann, & LeDoux, 2009; Schiller et al., 2010)
and pharmacological (Kindt et al., 2009; Nader et al., 2000) manip-
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ulations. Significant effects were also seen in declarative memories
(Schwabe, Nader, Wolf, Beaudry, & Pruessner, 2012), appetitive
memories (Corlett et al., 2013) and procedural (Walker,
Brakefield, Hobson, & Stickgold, 2003) memories. In contrast, some
suggest that well-learned instrumental memories do not undergo
reconsolidation when retrieved (Hernandez & Kelley, 2004).
Indeed, the age and strength of memories may play an important
role, as some studies suggest that older and stronger memories
are less susceptible to interruption (Schwabe & Wolf, 2009;
Suzuki et al., 2004; Wichert, Wolf, & Schwabe, 2013). However,
others have found that even old and strong memories may become
susceptible post-retrieval (Debiec, LeDoux, & Nader, 2002; Soeter &
Kindt, 2015).

The GCs reconsolidation literature focuses on emotional memo-
ries only, almost exclusively aversive ones. All studies but one
employed the fear conditioning paradigm (either classical or
instrumental), as only Achterberg et al. (2014) examined appetitive
memories. The studies suggest that GCs are potent modulators of
the reconsolidation of emotional memories, even when the mem-
ories are relatively old and strong (Jin et al., 2007; Taubenfeld
et al., 2009). Therefore, memory-related factors, albeit critical in
other reconsolidation studies, do not seem to provide an explana-
tion to the conflicting results in the GCs reconsolidation literature.

4.2. Manipulation-related factors

4.2.1. Reactivation
The term ‘reconsolidation’ might wrongly suggest that this

post-retrieval process involves the exact re-occurring of the initial
consolidation process. This is inaccurate, as reconsolidation is an
update mechanism (Rodriguez-Ortiz, Garcia-DeLaTorre,
Benavidez, Ballesteros, & Bermudez-Rattoni, 2008; Rodriguez-
Ortiz et al., 2005) occurring following the destabilization of the
memory trace. As such, it is triggered by the availability of new
information that was not present during initial consolidation.

Detecting prediction errors (i.e. a mismatch between expected
and current events) is a general coding strategy by which memo-
ries are acquired and updated. A prediction error can be negative
(a non-reinforced trial) or positive (a learning trial) (Fernandez,
Boccia, & Pedreira, 2016). A reminder cue (e.g. a light associated
with a shock), which had led to a prediction error (e.g. no shock
was actually given), can trigger two different processes: reactiva-
tion (followed by reconsolidation and update of the original mem-
ory), or creation of a newmemory (e.g. extinction memory) (Merlo,
Milton, & Everitt, 2015; Merlo, Milton, Goozee, Theobald, & Everitt,
2014). Not all reminder cues or retrieval protocols are equally
effective in destabilizing the memory and initiating the reconsoli-
dation process. To successfully trigger the reconsolidation process,
the reactivation (retrieval) experience has to be similar, but not
identical, to the original learning experience (Sevenster, Beckers,
& Kindt, 2013). The right degree of novelty can be manipulated,
for instance, by changing the length of the retrieval session.
Merlo et al. (2014) demonstrated that repeated unreinforced pre-
sentations of the conditioned stimulus create a new extinction
memory, while a short unreinforced exposure triggers memory
destabilization and the subsequent reconsolidation process. Yet
the definitions of a ‘brief’ exposure may vary between studies. Suc-
cessful reconsolidation effects were seen following stimulus pre-
sentations that lasted 4 s, same as acquisition (Schiller et al.,
2010) or 2 min, significantly longer than the original acquisition
presentation (Agren et al., 2012).

Even though brain activation patterns (e.g. in the hippocampus)
may differ in response to unpredictable vs. predictable cues (the
former more related to memory reactivation than the latter)
(Forcato et al., 2016), there is currently no objective measure of a
successful reactivation. Thus, interrupting the effects of a post-
retrieval behavioral or pharmacological manipulation might be dif-
ficult, as it may not be clear which of the processes was triggered
by the retrieval protocol: memory reconsolidation, or creation of
a new memory.

The same pharmacological treatment can lead to opposite
effects, depending on whether reconsolidation or extinction were
triggered (Merlo et al., 2015). Abrari et al. (2008) showed that cor-
ticosterone administration after memory retrieval produced a def-
icit in memory, suggesting a GCs-dependent disruption in memory
reconsolidation. Yet this deficit was transient, and a reminder
shock led to the return of fear. Transient effects were also seen in
the rodent study of Cai et al. (2006). As a reconsolidation effect is
thought to influence the original memory, it should resist relapse
paradigms such as reinstatement (Debiec et al., 2002). This led
Cai et al. (2006) to favor extinction over reconsolidation as an
explanation to the observed results, stating that GCs promoted a
very strong extinction memory, even after a single trial. The sys-
temic corticosterone studies, discussed in Section 3, shared a very
similar method to that of Cai et al. (2006). If extinction, as opposed
to reconsolidation, was triggered using this method in those stud-
ies, it could explain how GCs led to a lower fear response: not by
impairing reconsolidation, but by enhancing extinction. Due to
their role as consolidation enhancers, GCs are indeed efficient in
enhancing the consolidation of newly acquired extinction memo-
ries, leading to a reduced fear response (de Quervain & Margraf,
2008). However, if that is the case, it remains unclear why extinc-
tion learning, and not reconsolidation, was triggered by this para-
digm. A similar (brief and unreinforced) presentation of the
conditioned stimulus was found to be sufficient to trigger (and
disrupt) reconsolidation processes using other post-retrieval treat-
ments, such as protein-synthesis inhibitors and noradrenergic
b-blockers (Kindt et al., 2009; Nader et al., 2000).

4.2.2. Treatment
Even if reconsolidation was successfully triggered in all of the

above studies, the difference in the post- (or less commonly,
pre-) retrieval treatment may explain some of the conflicting
results. All animal studies presented here used a corticosterone
injection as a mean of systemic administration. A systemic injec-
tion procedure is a stressor by itself, as even a vehicle injection
can lead to corticosterone response (Atsak et al., 2016). This adds
to the possible adversity of the reactivation session (Yu et al.,
2015), creating an aversive experience in the animals studies.
The intensity, source and duration of stress can affect its modula-
tion of memory processes (Sandi & Pinelo-Nava, 2007). Stress can
impair the initial consolidation of memories when it is too intense
(or too weak, functioning in an inverted U-shaped curve) (Joels,
2006) or out of the learning context (Joels, 2006; Sandi & Pinelo-
Nava, 2007), and was also suggested to impair the reconsolidation
of emotional memories (Zhao et al., 2009). In contrast, the usual
practice in humans is oral administration of a hydrocortisone pill,
a less stressful experience (Meir Drexler et al., 2015, 2016). Thus,
the intense stress, which impaired memory reconsolidation in
the animal studies, was presumably not part of the manipulation
in the human studies, thus allowing GCs to exert their memory
enhancing properties. Future investigations into the noradrenergic
and GCs activity around the time of reactivation in different human
and animal paradigms might help support this explanation.

4.2.3. Individual differences
Certain traits may render the individual’s sensitivity to the

behavioral and neurobiological effects of stress and influence
learning and memory abilities (Salehi, Cordero, & Sandi, 2010).
For instance, trait anxiety was demonstrated to have a modulating
role on memory in both rodents (Herrero, Sandi, & Venero, 2006;
Sandi et al., 2008) and humans (Soeter & Kindt, 2013). Individual
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differences can also explain inconsistencies (e.g. lack of effects)
often seen in reconsolidation studies. Soeter and Kindt (2013)
demonstrated that the successful reduction of fear using a post-
retrieval propranolol (a noradrenergic b-blocker) depends on anx-
iety traits. The higher the anxiety, the lower the fear reduction.
High trait anxiety individuals often utilize a better safe-than-
sorry strategy when facing ambiguous situations. In that case, a
single unreinforced reactivation trial may be insufficient to create
a prediction error that destabilizes the fear memory trace (Soeter
& Kindt, 2013). Thus, high trait anxiety individuals may need
higher dosage of propranolol or a different reactivation protocol
to successfully target and change fear memories.

Sex might be an additional factor (Merz & Wolf, 2015). While
cortisol was found to enhance fear memory reconsolidation in
healthy men (Meir Drexler et al., 2015), it had no effect on women
(Meir Drexler et al., 2016). This could be a result of alternating con-
centrations of sex hormones during the different phases of the
female menstrual cycle or following oral contraceptive use. These
factors were found to affect emotional learning and memory pro-
cesses in humans and other animals (Ferree, Kamat, & Cahill,
2011; Milad, Igoe, Lebron-Milad, & Novales, 2009; Milad et al.,
2006) as well as the severity of symptoms in clinical populations
after trauma exposure (Ferree, Wheeler, & Cahill, 2012). Yet even
though males and females may respond differently to emotional
tasks (Milad et al., 2010) or GCs treatment (Merz et al., 2012),
the majority of studies are still conducted on male animals and
humanmales (Beery & Zucker, 2011; Soldin &Mattison, 2009). This
is true for the majority of studies that investigated GCs modulation
of reconsolidation as well. As sex and sex hormones might interact
with GCs modulation of memory reconsolidation, further investi-
gations in females are of great theoretical and clinical importance.
5. Implications and limitations

5.1. Theoretical implications and limitations

The main brain areas that underlie the effects of stress and GCs
on initial memory consolidation are the BLA, hippocampus and
prefrontal cortex (Roozendaal, McEwen, & Chattarji, 2009). The
role of GR in that process is well documented (Roozendaal,
2000). GR antagonism (e.g. by mifepristone) (Yang, Chao, & Lu,
2006) or inhibition of corticosterone synthesis (e.g. by metyra-
pone) (Blundell, Blaiss, Lagace, Eisch, & Powell, 2011) were found
to disrupt memory consolidation. In contrast, systemic corticos-
terone (Blundell et al., 2011) or GR agonists (e.g. dexamethasone)
administration (Ninomiya et al., 2010; Yang et al., 2006) facilitate
memory consolidation (for a review of consolidation enhancers,
also used as extinction-learning facilitators, see: Singewald,
Schmuckermair, Whittle, Holmes, & Ressler, 2015). GR can induce
genomic responses by binding to GCs responsive elements within
promoter regions of responsive genes, and act as transcription fac-
tors that induce gene expression (Singewald et al., 2015). They can
induce additional genomic changes via activation of signaling cas-
cades such as the ERK/MAPK pathway (Reul, 2014) and affect other
neurotransmitter systems, such as the noradrenergic (Roozendaal,
2000) and glutamatergic (Reul, 2014) systems. In addition,
membrane-bound GR can induce non-genomic actions, such as
the synthesis of endocannabinoids (Di, Malcher-Lopes, Halmos, &
Tasker, 2003) relevant for learning and memory. The reconsolida-
tion of memory after retrieval is not identical to initial consolida-
tion, yet both processes share similar mechanisms. Both depend
on protein synthesis and cell firing in specific brain areas such as
the amygdala (Nader et al., 2000) and the hippocampus (Lux,
Masseck, Herlitze, & Sauvage, 2015), and are facilitated by nora-
drenergic activity (Kindt et al., 2009; Mahabir, Tucholka, Shin,
Etienne, & Brunet, 2015) during a limited time-window (Kindt
et al., 2009). In a similar manner, the studies reviewed here
demonstrate that GR activation, in the BLA and hippocampus in
particular, is also critical for the reconsolidation of emotional
memories, both appetitive and aversive, after retrieval. The mech-
anism of this post-retrieval process, and its similarity to initial
GCs-dependent facilitation of memory consolidation, is yet to be
determined.

GCs modulation of memory reconsolidation cannot be simply
classified as impairing or enhancing, as it is mediated by additional
factors (Akirav & Maroun, 2013). The general reconsolidation liter-
ature identifies various factors that determine the strength and
direction of a reconsolidation effect. Among them are memory-
related factors, manipulation-related factors, and individual differ-
ences (Akirav & Maroun, 2013; Sandi & Pinelo-Nava, 2007; Soeter
& Kindt, 2013). This review, aiming to settle some of the conflicting
findings in the field, is a view on the ways these factors might
influence GCs modulation of memory reconsolidation. Future stud-
ies are needed to further support and elaborate these conclusions.
Many open questions remain. Some are more specific, for instance,
the question of GCs involvement in the reconsolidation of neutral
memories. Others are shared with the general reconsolidation lit-
erature, such as the possible adversity of a retrieval session in a
fear conditioning paradigm, and the role of individual and sex dif-
ferences in achieving reconsolidation effects.

5.2. Clinical implications and limitations

Pathologic fear and anxiety characterize a range of psychiatric
conditions, including phobias, panic disorder, obsessive-
compulsive disorder (OCD), generalized anxiety (GAD) and post-
traumatic stress disorder (PTSD) (Singewald et al., 2015). Fear
memory formed by the fear conditioning paradigm might be sim-
ilar to these memories (Cordero, Kruyt, Merino, & Sandi, 2002;
Yehuda & Antelman, 1993). Reward memories, on the other hand,
can serve as a model for drug-seeking behavior and other addic-
tions (Achterberg et al., 2014; Wang et al., 2008). Disruption of
maladaptive emotional memories by blocking reconsolidation
can thus be a possible therapeutic tool (Merlo et al., 2015). Relapse
is not uncommon in patients, even after successful extinction-
based (‘exposure’) treatments (Bouton, 2014; Craske, 1999;
Singewald et al., 2015). Yet due to the impact of reconsolidation-
based manipulations on the original memory trace itself, the effect
is suggested to be resistant to relapse (but see: Gisquet-Verrier
et al., 2015; Ryan & Tonegawa, 2016 for alternative explanations).
The reconsolidation literature points to the noradrenergic b-
blocker propranolol as a potent pharmacological agent, capable
of disrupting strong emotional memories (Kindt et al., 2009;
Sevenster et al., 2013), even in sub-clinical populations (Soeter &
Kindt, 2015). Noradrenergic activity in the amygdala is necessary
for emotional memories to reconsolidate after retrieval (Debiec &
LeDoux, 2004; Schwabe et al., 2012), and so disturbance to this
process can disrupt the memory trace from reconsolidating. The
role of GCs in memory consolidation is well documented
(Roozendaal, 2000; Wolf, 2009) and due to their facilitative effect
on extinction memory consolidation they can be used in treatment
(de Quervain & Margraf, 2008). Recent evidence, reviewed here,
reveal that GCs may serve as an additional target for future
reconsolidation-based therapies.

Mifepristone has been widely used as GR antagonist for the
study of the role of GR in memory consolidation in the hippocam-
pus and amygdala (Oitzl, Fluttert, & de Kloet, 1998; Roozendaal &
Mcgaugh, 1997). This is currently the only suitable GR antagonist
approved for human use. It is safe and effective to use in patients
with psychotic depression and bipolar disorder (DeBattista &
Belanoff, 2006; Flores, Kenna, Keller, Solvason, & Schatzberg,
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2006). Here, we reviewed the consequences of systemic mifepris-
tone administration (Nikzad et al., 2011; Pitman et al., 2011;
Taubenfeld et al., 2009), revealing its disrupting effects on the
strength of reactivated conditioned fears. Until recently, it
remained unclear whether acute dose of this antagonist can indeed
affect traumatic memories in clinical populations. Wood et al.
(2015) investigated the effects of mifepristone, given in proximity
to reactivation of traumatic memories, on PTSD symptoms and
physiological response in patients (both men and women). Yet
even though the treatment dose given to patients corresponded
to a successful treatment dose in rodents (30 mg/kg), no significant
reduction in either symptoms or physiological response was found.
This demonstrates the difficulty in translating successful results
from animal model to patients. However, as even propranolol
could not lead to a reconsolidation disruption in the study of
Wood et al. (2015) (but see: Mahabir et al., 2015), the lack of the
effect might be attributed to memory-related factors, as opposed
to the post-reactivation treatment itself. Maladaptive memories
in sub-clinical phobic populations (Soeter & Kindt, 2015) and even
in abstained drug-addicts (Zhao et al., 2009) might be easier to suc-
cessfully target in a reconsolidation-based treatment, compared
with the more complex multiple memory traces in PTSD patients
(Suris, North, Adinoff, Powell, & Greene, 2010).

6. Conclusions

GCs modulation of emotional memory reconsolidation has been
investigated only recently, often with conflicting, ‘paradoxical’
results. In this review we presented animal and human studies that
suggest a critical role for GCs in this post-retrieval process. We
pointed to mediating factors that affect the strength and direction
of GCs effects on memory reconsolidation, demonstrating that the
so-called ‘paradox’ can be solved once additional factors are taken
into account. We conclude that GR activation in the amygdala and
hippocampus is involved in emotional memory reconsolidation.
This demonstrates a similarity between post-retrieval reconsolida-
tion and initial memory consolidation. In addition, it suggests the
use of GR antagonists (e.g. mifepristone) as possible adjuvants in
future reconsolidation-based therapies.
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