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The noradrenergic (NA)-system is an important regulator of cognitive function. It
contributes to extinction learning (EL), and in disorders where EL is impaired NA-
dysfunction has been postulated. We explored whether NA acting on beta-adrenergic-
receptors (β-AR), regulates EL that depends on context, but is not fear-associated.
We assessed behavior in an “AAA” or “ABA” paradigm: rats were trained for 3 days
in a T-maze (context-A) to learn that a reward is consistently found in the goal arm,
despite low reward probability. This was followed on day 4 by EL (unrewarded),
whereby in the ABA-paradigm, EL was reinforced by a context change (B), and in
the AAA-paradigm, no context change occurred. On day 5, re-exposure to the A-
context (unrewarded) occurred. Typically, in control “AAA” animals EL occurred on day
4 that progressed further on day 5. In control “ABA” animals, EL also occurred on
day 4, followed by renewal of the previously learned (A) behavior on day 5, that was
succeeded (on day 5) by extinction of this behavior, as the animals realised that no
food reward would be given. Treatment with the β-AR-antagonist, propranolol, prior to
EL on day 4, impaired EL in the AAA-paradigm. In the “ABA” paradigm, antagonist
treatment on day 4, had no effect on extinction that was reinforced by a context
change (B). Furthermore, β-AR-antagonism prior to renewal testing (on day 5) in the
ABA-paradigm, resulted in normal renewal behavior, although subsequent extinction of
responses during day 5 was prevented by the antagonist. Thus, under both treatment
conditions, β-AR-antagonism prevented extinction of the behavior learned in the “A”
context. β-AR-blockade during an overt context change did not prevent EL, whereas
β-AR were required for EL in an unchanging context. These data suggest that β-AR may
support EL by reinforcing attention towards relevant changes in the previously learned
experience, and that this process supports extinction learning in constant-context
conditions.

Keywords: extinction learning, noradrenaline, rodent, spatial learning, beta-blocker, hippocampus,
propranolol
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Introduction

Arousal and attention are key factors in effective learning
behavior. Attending to experience both facilitates and expedites
learning, and one of the key neuromodulators that regulates this
process is noradrenaline (Crow, 1968; Kety, 1970, 1972; Aston-
Jones and Bloom, 1981a,b; Sara and Segal, 1991). Attending to
experience is also a key element in the process of extinction
learning, whereby an individual learns that a prior learned
experience no longer fulfills its learned function, or is no longer
relevant. In biological terms, this means that the response to
a conditioned stimulus (CS) declines when the stimulus is
presented without reinforcement. In cognitive terms it means
learning, for example, that the neighbor’s house is no longer
frightening, because the dog that bit you has been removed, or
because it subsequently desists from biting you.

Extinction learning can thus be expected to occur under
two possible conditions: the removal of the neighbor’s dog
comprises a context change, and substantial evidence exists that
this strongly facilitates extinction (Bouton, 2004), whereby the
circumstance whereby the neighbors dog remains in residence
but never bites you again, amounts to extinction learning in
the absence of a context change. Understanding the mechanisms
that facilitate extinction is an important goal in understanding
how extinction occurs at the cellular level, and in identifying
strategies to optimise extinction. The noradrenergic (NA) system
has been subjected to considerable attention in this regard, due to
its postulated role in impaired extinction learning, for example,
in post-traumatic stress disorder (Taylor and Raskind, 2002;
Peskind et al., 2003; Griffith, 2005). Although it is clear that NA
modulation of the amygdala plays a very important role in the
learning and extinction of emotive memories mediated by the
amygdala (Debiec and Ledoux, 2004; Roozendaal and McGaugh,
2011), much less is understood about the role of the NA
system in extinction learning processes that are supported by the
hippocampus. The hippocampus is involved in the assimilation
and retrieval of context during novel extinction learning as well
as during recall of context-dependent fear extinction (Good and
Honey, 1991; Hobin et al., 2006; de Carvalho Myskiw et al.,
2014; Portugal et al., 2014; Tan et al., 2014), and as well as
during associative learning in humans (Lissek et al., 2013). It
is also strongly implicated in context-dependent extinction in
the absence of fear-reinforcement (Wiescholleck et al., 2014).
Furthermore, the dorsal hippocampus contributes to the renewal
of the conditioned response following fear extinction (Ji and
Maren, 2005).

Current reports suggest that is that the hippocampus is
particularly important for context-dependent extinction (Kalisch
et al., 2006). Most studies have examined this with regard to
fear-extinction (Alvarez et al., 2008; Lang et al., 2009; Maren
et al., 2013), but recently, it was demonstrated that extinction
learning in an appetitive context is also likely to involve
the hippocampus (André et al., 2015). In rodents, context-
dependent spatial learning, as well as hippocampal synaptic
plasticity that is triggered by spatial learning, is supported by
β-adrenergic receptors (Kemp and Manahan-Vaughan, 2008;
Hagena and Manahan-Vaughan, 2012; Goh and Manahan-

Vaughan, 2013). Furthermore, object-context learning triggers
β-adrenergic receptor-dependent synaptic plasticity in the
hippocampus (Kemp andManahan-Vaughan, 2008; Hagena and
Manahan-Vaughan, 2012; Goh and Manahan-Vaughan, 2013;
Hansen and Manahan-Vaughan, 2014). We therefore postulated
that NAmodulation via activation of β-adrenergic receptors may
be important for extinction learning of an associative spatial
learning task. To test this possibility, we examined whether
β-adrenergic receptors contribute to extinction learning in a
T-maze task, when the context remains consistent, or when
extinction is facilitated by a context change.

Materials and Methods

The present study was carried out in accordance with
the European Communities Council Directive of September
22nd, 2010 (2010/63/EU) for care of laboratory animals. All
experiments were performed according to the guidelines of the
German Animal Protection Law and were approved by the North
Rhine-Westphalia State Authority (Bezirksamt, Arnsberg). All
efforts were made to reduce the number of animals used.

Animals
Male Wistar rats (7–8 weeks old) underwent implantation of
guide cannulae, whilst under anesthesia (52 mg/kg sodium
pentobarbital via intraperitoneal (i.p.) injection), as described
previously (Manahan-Vaughan, 1997). One cannula was
implanted into the lateral cerebral ventricle of each hemisphere
(0.5 mm posterior to bregma, 1.6 mm lateral to the midline; size:
5.6 mm length, 0.8 mm diameter, 4.5 mm depth).

Animals were allowed 2 weeks to recover, before any
behavioral experiment took place. They were housed singly and
maintained on a 12-h light/12-h dark cycle with food and water
ad libitum.

Two days prior to commencing the behavioral training, the
rats were weighed and food access was reduced to result in a
consistent body weight of 85% relative to the animal’s weight
immediately prior to starting the study. During the habituation
phase, the animals were handled individually for 20 min per day.

T-maze and Extinction Task
Experiments were conducted in a T-maze that comprised a
starting box (25 × 20 cm) that was separated from the main
corridor (100 × 20 cm) by a sliding door and two side corridors
(40 × 10 cm) positioned perpendicular to the other end of
the main corridor, as described previously (Wiescholleck et al.,
2014). The walls were 40 cm high. At the end of each arm, at a
distance of 1 cm from the end wall, a small round cup was placed
on the floor equidistant from the walls, in which a reward could
be placed. The reward could not be seen from a distance.

The context of the maze was changed in three ways, as
described previously (Wiescholleck et al., 2014): (1) the plastic
floor of the maze could be exchanged. Typical floor patterns
comprised zebra stripes, checkered patterns, or geometric lines;
(2) at the end of the 2 arms odors were placed that could be
exchanged—1 µl of almond or vanilla (food aroma, Dr. Oetker,
Bielefeld, Germany) was used; (3) extra-maze cue cards were used
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FIGURE 1 | Antagonism of β-adrenergic receptors prevents extinction
learning in the AAA paradigm. Animals underwent 20 contiguous trials per
day of training in the AAA paradigm. Bar charts represent the number of
correct arm choices in the first and second set of 10 trials on each test day.
Animals participated in 3 days of acquisition training in the AAA paradigm,
ending on day 3 with a 25% reward probability. Control animals were treated
with vehicle prior to re-exposure to the context on day 4, in the absence of
reward. Here, by the 2nd set of 10 trials significant extinction was evident.
Upon return to the same context on day 5 (without reward) a further extinction
of the learned conditioned stimulus (CS)-US response was shown. Treatment
of animals, with the β-adrenergic receptor antagonist propranolol, before
re-exposure to the A context in the absence of reward on day 4, significantly
impaired extinction learning. A return to the same context on day 5 resulted in
extinction of the learned response. An asterisk indicates a significant effect of
at least p < 0.01 between the trials indicated by the bar. The arrow signifies
the time of antagonist/vehicle-injection.

that could also be exchanged (Din A5 white paper with a black
cross or a black square). These were placed 40 cm above the end
of the main corridor.

On each experiment day, rats participated in a learning
session that comprised 20 consecutive trials, that were split into
two data blocks (1st 10, 2nd 10 trials) for analysis purposes (see
below). The trial commenced with the opening of the door to the
starting box, whereupon the animal entered the maze. The trial
concluded when the animal entered an arm of the T-maze or
when a specific time-limit (see below) had elapsed in the absence
of arm entry. Animals learned to locate a food pellet (Dustless
Precision Pellets 45 mg, BioServ, USA) that was placed at the end
of a predetermined arm. This ‘‘correct’’ arm remained constant
for a given animal during the training days. The floor and odor
context were also kept constant during this time. On days 1
through 3, the reward probability was reduced in a stepwise
manner from 100% to 25% to augment extinction resistance, as
described previously (André et al., 2015). In conjunction with
the reward probability reduction, the time limit for reaching the
arm was also reduced from 2 min to 30 s Learning criterion was
deemed to be acheived when the animal had successfully entered
the correct arm on 8 of the final 10 trials of a given experiment
day. Animals that failed to reach criterion by day 3 were excluded
from the remainder of the study and their data from days 1–3
were not included in the analysis.

On day 4, extinction learning was assessed, whereupon the
animals participated in 20 trials, during which no reward was
present at any time. One day later (day 5), renewal (RN) was
assessed by re-introducing the animal to the original T-maze (A)
context for 20 trials with no food reward.

One animal cohort was tested in an AAA paradigm, where all
trials (days 1–5) were conducted in the same context. A second
cohort was assessed in an ABA paradigm, in which training
was conducted in context A while the extinction session was
conducted in context B, whereby the context (floor, odor and cue
card) had been changed (André et al., 2015).

On day 5, animals (in both cohorts) were returned to the
‘‘A’’ context (in the absence of food reward). Typically, further
extinction occurs under control conditions in the AAA group,
whereas renewal of the behavior learned in the A context (1st
10 trials) followed by extinction of this behavior due to the
lack of food reward (2nd 10 trials) occurs in the ABA groups
(Wiescholleck et al., 2014; André et al., 2015).

Analysis of Decision Time
Decision-time typically declines, in close alignment with the
increase in choice confidence on the part of the animal, during
the gradual acquisition of the T-maze task (Luce, 1986; Avila and
Lin, 2014; André et al., 2015). We evaluated this by recording the
time required to leave the start box and reach the arm chosen
by the animal. We evaluated this for every choice (incorrect and
correct choices). By this means we obtained a measure of the
confidence of the animal as to which arm was the correct choice
(André et al., 2015).

Pharmacological Treatment
The β-adrenergic receptor antagonist, propranolol (Tocris
Bioscience, Bristol, UK), was dissolved in 0.9% NaCl in a dosage
of 2µg/5µl. This dose does not affect basal synaptic transmission
in the hippocampus (Kemp and Manahan-Vaughan, 2008). The
bilateral guide cannulae were inserted, and after ca. 5 min, a 5 µl
solution volume was injected at a rate of 1 µl/min. The cannulae
were left in place for a minimum of 5 min before removal (André
et al., 2015). Propranolol, or vehicle, was given 30 min prior to
the first trial of the extinction day (day 4) in the AAA and ABA
paradigms. In a separate experiment with a third animal cohort,
propranolol, or vehicle, was applied 30 min before the 1st trial
before renewal testing on day 5 in the ABA group.

Data Analysis
Correct answers were defined as trials in which the animal moved
first to the target arm. Each 20-trial session was divided into two
sets of 10 trials (first 10 and last 10 trials), as described previously
(André et al., 2015). The time required to reach the end of the
first arm visited was calculated for each trial.

To analyse decision time, the time taken by the animal to
move from the departure area in the T-Maze to its arm of choice
was recorded for each trial, and data were segregated into 4 sets
of 5 trials for each day, of which the times were averaged (André
et al., 2015).

Data were analyzed by means of a multifactorial analysis
of variance (ANOVA) with repeated-measures including
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2 within-subject factors (Day and Session) and 2 between-group
factors (Treatment and Experimental Design). Differences
between trial blocks or between trials days of a specific group
(control or propranolol-treated animals) were assessed using
Bonferroni post hoc tests. Except where ‘‘ANOVA’’ is mentioned
explicitly, all p values in the results section correspond to values
determined from the Bonferroni test. The level of significance
was set at p < 0.05.

Results

Extinction in the AAA Paradigm is Prevented
by Antagonism of β-Adrenergic Receptors
During the first 3 experiment days, animals learned to take a
constant turn (e.g., left) in a T-Maze to obtain a food reward,
whereby reward probability was systematically reduced to 25%
by the last trial block of day 3. A significant difference in
performance was evident between day 1 and day 2 (Figure 1),
reflecting successful acquisition of the task (ANOVA: for animals
subsequently treated with vehicle, p < 0.001, n = 8; for animals
subsequently treated with propranolol, p < 0.001, n = 8). No
significant difference was evident in performance within the first
and second 10 trial block on day 3, at which point, learning
criterion had been reached (Figure 1). No significant difference
in the animals’ performance was evident on days 1, 2 or 3 when
the two animals cohorts were compared (F(1.06,13.783) = 0.07;
p = 0.81).

On day 4 and 5 the animals were returned to the same context
but received no reward (AAA paradigm). Thirty minutes prior
to commencing the first trial on day 4, animals were treated with
either the β-adrenergic receptor antagonist, propranolol (n = 8),
or vehicle (n = 8).

In both treatment groups, performance levels were equivalent
in the 1st ten trials of day 4 (p > 0.001). Furthermore,
performance levels were equivalent during the 1st ten trials of
day 4 compared to the last ten trials of day 3 ANOVA: for control
animals, p > 0.001; for propranolol-animals, p > 0.001, n = 8).

Differences became apparent in the 2nd trial block on day
4, however (Figure 1). Here, vehicle-treated animals exhibited
significant extinction of the learned response when performance
in the 1st trial block on day 4 was compared to performance in
the 2nd trial block (p < 0.001). In contrast, propranolol-treated
animals failed to show this extinction effect. Here, performance
in the 2nd trial block was equivalent to performance in the
1st trial block (p > 0.001). Furthermore, the performance of
the vehicle and propranolol-treated animals during the first
and second trial blocks on day 4 was significantly different
(ANOVA: F(1,14) = 11.486; p = 0.005). Thus, extinction in the
AAA paradigm, in the absence of a context change, is impaired
by prior treatment with a β-adrenergic receptor antagonist.

On day 5, animals were re-exposed to the same context in the
absence of reward. Here, performance in vehicle-treated animals
was equivalent in the 1st set of trials compared to performance
in their last trial block on day 4 (p = 0.514). Extinction continued
during the trials, with correct arm choices in the 2nd trial block
on day 5 being significantly poorer than in the 1st trial block
p < 0.001).

Effects were similar in the animals that had been treated
on day 4 with propranolol. Here, their performance during the
1st and 2nd trial blocks on day 5 were equivalent to vehicle-
treated controls (ANOVA: F(1,14) = 1.112; p = 0.311), although
their performance in the 1st 10 trials was significantly reduced
compared to their performance in the last trial block on day 4
(p < 0.002). Thus, in the absence of propranolol, extinction
learning was equivalent.

These data suggest that, antagonism of β-adrenergic receptors
impair extinction learning in the absence of a context change.

Extinction in the ABA Paradigm is not Prevented
by Antagonism of β-Adrenergic Receptors
A context change in the T-maze paradigm has been shown to
facilitate extinction (Wiescholleck et al., 2014). Here, the protocol
was identical to the AAA paradigm described above, except that
on day 4 (‘‘B’’ context) the floor pattern was changed, as were the
odor-related and extramural cues. On day 5, the animals were re-
exposed to the ‘‘A’’ context that they had experienced on days
1–3. On days 4 and 5, no reward was given, as was the case for
the AAA paradigm. Thirty minutes prior to commencing the
first trial on day 4, animals were treated with either propranolol
(n = 10) or vehicle (n = 10).

In vehicle-treated animals, extinction occurred on day 4
that was significantly better than extinction effects in the AAA
paradigm (Figure 2) (p < 0.029), in line with previous results

FIGURE 2 | Antagonism of β-adrenergic receptors before the extinction
trials in a new context (ABA paradigm) does not prevent extinction
learning. Control animals were treated with vehicle prior to exposure to the
novel context “B” on day 4, in the absence of reward. Here, by the 2nd set of
10 trials significant extinction was evident that was also significantly better
than extinction learning under the same conditions in the “A” context. Upon
return to the learning context “A” on day 5 (without reward) an initial recovery
(renewal) of the learned CS-US response was evident in the 1st set of 10 trials
that was followed by significant extinction of the CS-US response. Treatment
of animals with the β-adrenergic receptor antagonist, propranolol, before novel
exposure to the “B” context in the absence of reward on day 4, had no effect
on extinction learning. A return to the learning context “A” on day 5 resulted in
renewal of the learned CS-US response (in the 1st 10 trials), that was followed
by an extinction of this learned response during the last 10 trials of the day.
Responses were equivalent to this observed in control animals. The arrow
signifies the time of antagonist/vehicle-injection.
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(Wiescholleck et al., 2014). Performance in the second trial
block on day 4, was significantly weaker than in the first trial
block (p < 0.006) indicating that significant extinction had
occurred.

Treatment of animals with propranolol 30 min prior to
entering the ‘‘B’’ context on day 4, had no significant effect on
extinction learning (Figure 2): the performance of the animals
was equivalent to that seen in controls (ANOVA: F(1,18) = 0.258;
p = 0.618).

These data suggest that antagonism of β-adrenergic receptors
does not influence extinction learning that is supported by a
change of context.

Re-exposure to context ‘‘A’’ on day 5 elicited significant
renewal effects in both animal groups (Figure 2). Thus, a
comparison of the last trial block on day 4 with the 1st trial
block on day 5, revealed a significantly improved correct choice
performance in both the vehicle-treated animals (p < 0.05), and
in animals that had been treated with propranolol on day 4
(p < 0.05). Thus, β-adrenergic receptor-antagonism does not
affect renewal of the experience learned in the ‘‘A’’ context.

In both animal groups, extinction of this renewal effect
became evident during the second set of 10 trials on day 5
(Figure 2) (p < 0.001, 1st vs. 2nd 10 trials, for both cohorts).
No significant effect was evident when performance on day 5
was compared in the control and propranolol-treated animals
(ANOVA: F(1,18) = 0.196; p = 0.663).

Antagonism of β-Adrenergic Receptors Prior
to the Renewal Test in the ABA Paradigm
has no Effect on Renewal but Prevents
Extinction of the Old Context
The lack of effect of the β-adrenergic receptor-antagonist could
derive from the fact that by 24 h after drug administration,
its biological titre is so low as to no longer effectively block
β-adrenergic receptors. This likelihood is supported by the
finding that on day 5, in the AAA paradigm, no extinction
impairment occurs. Thus, to clarify if β-adrenergic receptor
antagonism has no bearing on renewal, we applied the antagonist
30 min before trial-begin on day 5 in the ABA paradigm.

Under these circumstances, renewal was also equivalent
in vehicle-treated (n = 10) and propranolol-treated animals
(n = 10) (Figure 3). Here, we observed a significant renewal
of the response learned in context ‘‘A’’ in both vehicle-
injected and propranolol-treated animals (p < 0.001, for
both groups), when performance in the 1st trial block
on day 5 was compared to performance in the last trial
block on day 4. Renewal effects were also equivalent in
both animal groups (ANOVA: F(1,18) = 0.181; p = 0.676).
Strikingly, although vehicle-treated animals exhibited significant
extinction in the last trial block of day 5 (p < 0.001,
compared to the 1st trial block on day 5), extinction was
impaired in the propranolol-treated group (p = 0.108, 1st
vs. 2nd trial block, day 5). Furthermore, the performance
of the control and propranolol-treated animals was also
significantly different from one another during the 2nd
(extinction) trial block on day 5 (ANOVA: F(1,18) = 5.469;
p = 0.032).

FIGURE 3 | Antagonism of β-adrenergic receptors before renewal in
the ABA paradigm has no effect. On day 5, of the ABA paradigm, before
the exposure to the learned “A” context in the absence of reward, control
animals were treated with vehicle. During the first 10 trials, there was a
recovery of the learned response that was followed by its extinction during the
last 10 trials. Treatment of animals with the β-adrenergic receptor antagonist,
propranolol, before the re-exposure to the learned context “A” on day 5, did
not have any effect on the renewal effect (1st set of trials), but significantly
inhibited subsequent extinction (2nd set of trials). The arrow signifies the time
of antagonist/vehicle-injection.

The data confirm that renewal is unaffected by β-adrenergic
receptor-antagonism. The data further indicate that β-adrenergic
receptors are required for extinction (in the AAA paradigm) and
(re-)extinction in the ‘‘A’’ context within the ABA paradigm.
In other words β-adrenergic receptors are only required when
extinction learning takes place in the context in which the
original learning occurred.

Antagonism of β-Adrenergic Receptors has no
Effect on Decision-Time in the “ABA” Paradigm
but Improves Decision Time during Extinction
Learning in the “AAA” Paradigm
When animals begin to acquire the task, the decision-time
decreases in conjunction with an improvement in correct choices
(Luce, 1986; Avila and Lin, 2014). Conversely, during extinction
learning, decision-time typically increases if an attrition in the
number of correct arm choices occurs (André et al., 2015). The
latter situation was the case for vehicle-treated and propranolol-
treated animals in the periods encompassing day 1 and day 3
(task acquisition), under all conditions tested (Figure 4). In other
words decision-time steadily decreased as the animals acquired
the task and reached the learning criterion.

In contrast, in the AAA paradigm, in vehicle-treated animals
(n = 8) extinction learning on days 4 and 5 was paralleled by
a steady increase in decision-time (p < 0.001) (Figure 4A),
reflecting the increasing insecurity of the animals as to which
arm to choose. Decision-time was equivalent on day 5 in
both vehicle-treated and propranolol-treated animals (n = 8).
However, a direct comparison of decision time during day 4
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FIGURE 4 | Antagonism of β-adrenergic receptors has no effect on
decision-time in the “ABA” paradigm, but improves decision time
during extinction learning in the “AAA” paradigm. The graphs represent
the amount of time that was needed to reach the end of an arm (both correct
and incorrect choices) after door-opening. For each day, the time for 5
contiguous trials was averaged (i.e., 4 time-points per day “injection prior to
extinction on day 4” are shown). Decision-times recorded in the AAA
paradigm (A, injection prior to extinction on day 4), the ABA paradigm
(injection pre-extinction on day 4) (B) and the ABA paradigm paradigm
(injection prior to the renewal trials on day 5) (C) are shown. During learning of
the task, the time needed to reach the end of an arm steadily decreased while
the correct answers increased, until a basal level of correct answers was
reached on day 3 that reflected animals reaching the 80% criterion of correct
arm choices. During the extinction and renewal trials, the decision-time
increased in parallel with the decrease of correct choices. Propranolol, had no
effect on decision time during extinction learning on day 4 (B), and renewal on
day 5 (C) in the “ABA” paradigm. Decision time during extinction learning was
improved in the presence of propranolol in the “AAA” paradigm (A).

revealed significantly faster decision times in propranolol-treated
animals (F(1,14) = 11.523; p = 0.004).

In the ABA paradigm during renewal (day 5), decision-time
continued to decrease in both animals group (each n = 10,
Figures 4B,C), whereby decision time increased slightly (n.s.)
in the time-frame of the 2nd set of trial blocks, whereupon
extinction had occurred.

Antagonism of β-adrenergic receptors using propranolol
prior to extinction, did not affect the overall trend towards
an increase in decision-time across days 4 and 5 in the AAA

paradigm (Figure 4A), (F(1,14) = 2.148; p = 0.165) (Figure 4A),
or on performance in the ABA paradigm where propranolol was
given on day 4 (Figure 4B), (F(1,18) = 0.02; p = 0.89).

The injection of propranolol prior to the renewal trials in the
ABA protocol also didn’t influence the decision time (F(1,18) =
1.154; p = 0.297, each n = 10) (Figure 4C). Thus, treatment
with propranolol did not impair the choice-making confidence
of the animals, suggesting that consolidation of the extinction
experience was not influenced by propranolol treatment. The
fact that propranolol improved decision-times during extinction
in the ‘‘AAA’’ paradigm, suggests that the impairments of
extinction observed under these conditions (Figure 1) may relate
to a reduction in attention.

Discussion

The data of this study indicate that when extinction
learning occurs under non-emotive circumstances, release
of noradrenaline and subsequent activation of β-adrenergic
receptors is a critical factor. We observed that antagonism
of β-adrenergic receptors prevents extinction learning if the
context remains constant. In contrast, extinction learning is
unaffected by β-adrenergic receptor–antagonism, if extinction
is reinforced by a context change. This suggests that the β-
adrenergic receptor is required for extinction learning of a
consolidated learned experience, whereby it supports attention
to the absence of the CS, and the subsequent adaptation in
behavior that results. Where attention to the absent CS is
reinforced by a context change, support of extinction by β-
adrenergic receptors becomes redundant, presumably because
the increased arousal triggered by the context change mediates
activation of additional neuromodulatory systems that support
and reinforce extinction (e.g., dopamine or corticosterone).
This likelihood is reinforced by the finding that renewal of the
learned experience (in the ‘‘A’’ context, on day 5), following
extinction in the ‘‘B’’ context, is unaffected by β-adrenergic
receptor–antagonism (applied prior to testing on day 5), whereas
the subsequent (re)-extinction of this behavior is prevented. The
finding that decision-time is unaffected by β-adrenergic receptor
antagonism in the ABA contexts, but is improved during
extinction learning in the AAA context, suggests that it is not
learning per se, but rather attention to the salient elements of the
experience that is modulated by β-adrenergic receptors during
extinction.

Although many studies have addressed the role of
noradrenaline and β-adrenergic receptors in extinction of
aversive experience (Cain et al., 2004), little is known about
its role in extinction of appetitive memory (Mueller and
Cahill, 2010), as was the focus of the current study. A role for
noradrenaline in both memory consolidation has been reported
(Quirarte et al., 1997; Roozendaal et al., 2002). Furthermore,
noradrenaline is involved in fear extinction consolidation
processes (Ouyang and Thomas, 2005; but see also: Lonsdorf
et al., 2014). In the present study we did not see such an effect
with regard to consolidation of extinction of appetitive memory,
at least in terms of the involvement of β-adrenergic receptors:
renewal of the learned response was unaffected by treatment with

Frontiers in Behavioral Neuroscience | www.frontiersin.org 6 May 2015 | Volume 9 | Article 125

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


André et al. β-adrenergic receptors regulate extinction

a β-adrenergic receptor antagonist prior to extinction learning.
Two possible explanations spring to mind: on the one hand,
the studies, where noradrenaline involvement in extinction
consolidation was reported, were predominantly conducted
under the conditions of fear extinction (Mueller and Cahill, 2010)
and were particularly related to context-dependent extinction
(Ouyang and Thomas, 2005), leading to the proposal that
noradrenaline release onto β-adrenergic receptors is particularly
relevant for context-dependent fear extinction (Mueller and
Cahill, 2010). On the other hand, we cannot exclude that
consolidation of extinction learning depends on the activation of
adrenergic receptors other than the β-adrenergic receptors. In
fact, evidence exists that different adrenergic receptors may play
different roles in the regulation of extinction learning, and this
may relate to their relative sensitivity to noradrenaline and the
signaling pathways to which they couple. For example, although
we observed that β-adrenergic receptor antagonism prevents
extinction learning in an unchanged context, others have
reported that antagonism of α2-adrenergic receptors enhances
extinction in an unchanged context (Morris and Bouton,
2007). This may relate to the differences in the paradigms
used (non-fearful memory vs. conditioned-fear memory), and
thus, to the relative release of noradrenaline from the locus
coeruleus triggered by these different experiences (Bouret and
Sara, 2004; Sara, 2009), as well as and to differences in receptor-
sensitivity to noradrenaline (Ahlquist, 1948; Molinoff, 1984).
Furthermore, whereas β-adrenergic receptors are positively
coupled to adenylyl cyclase (Strader et al., 1989) and promote
insertion of the AMPA-receptor subunit, GluA1/GluR1, into
the postsynapse (Joiner et al., 2010), α2-adrenergic receptors are
negatively coupled to adenylyl cyclase and suppress activity of
voltage-activated Ca2+-channels and activate receptor-operated
K+-channels (Limbird, 1988). Thus, these receptors can be
expected to mediate opposing effects on neuronal function.
Nonetheless, our data suggest that β-adrenergic receptor
activation is not required for consolidation of extinction
learning. However, we saw clear effects of β-adrenergic
receptor antagonism on extinction learning in the absence
of a context change. This suggests that activation of β-adrenergic
receptors may be required to support attentional focus on
the CS to enable effective extinction learning under these
circumstances.

In the central nervous system, noradrenaline is released from
afferent fibers that originated in the locus coeruleus, the firing
of which increases in response to novelty (Sara, 2009), and
a variety of behaviorally relevant stimuli such as unexpected
events, threats, reward or fear (Sara and Bouret, 2012). The
degree of activity of the locus coeruleus is graded according
to the saliency of the experience, whereby the slow tonic
changes in firing rates that accompany fluctuations in arousal
state, can rapidly change into burst firing upon exposure to
noxious stimuli, for example (Valentino and Van Bockstaele,
2008). The locus coeruleus also exhibits a very specific activity
profile in response to conditioned stimuli, whereby firing can
become persistent and intensify if a stimulus is followed by a
salient event (Aston-Jones et al., 1994; Sara et al., 1994; Bouret
and Sara, 2004), and firing is also triggered during extinction

of appetitive and aversive learning (Sara and Segal, 1991).
Furthermore, emotionally arousing experiences reinforce the
acquisition emotional experiences via activation of β-adrenergic
receptors (Liang et al., 1986; Cahill et al., 1994; Ji et al., 2003;
Grillon et al., 2004). In an interesting parallel to the ability of the
locus coeruleus to engage in noradrenaline release that is graded
according to the saliency of the experience, the hippocampus
exhibits graded sensitivity to NA (Loy et al., 1980). The dentate
gyrus is the most sensitive, followed by the CA3 region and
the CA1 region (Loy et al., 1980). The hippocampus engages
in the very precise sorting of learned associative experiences,
such that the discrimination of stored experiences from novel
similar experiences occurs (pattern separation), presumably at
the level of the dentate gyrus (Kesner, 2013a,b). By contrast,
retrieval of associativememories based on exposure to a fragment
of that memory (pattern completion) is enabled by the CA3
and possibly the CA1 region (Kesner, 2013a,b). In the present
study, we saw that extinction learning in the absence of a
context change is supported by β-adrenergic receptors. This
process is arguably supported by pattern separation mechanisms
in the hippocampus. Learning under these conditions would
not be expected to trigger intense noradrenaline release from
the locus coeruleus, but this may be sufficient to selectively
support information processing and pattern separation in the
dentate gyrus.

Many of the effects on cognition and synaptic plasticity of
noradrenaline, released from the locus coeruleus, are mediated
by β-adrenergic receptors, (Lemon et al., 2009; Lemon and
Manahan-Vaughan, 2012; Goh and Manahan-Vaughan, 2013;
Hansen and Manahan-Vaughan, 2014), and the T-maze task we
used in our study, because included both spatial and context-
dependent learning elements, is likely to recruit hippocampal
information encoding. For this reason we hypothesized that
β-adrenergic receptors would be required for extinction learning
in this task. Thus, it was surprising to find that antagonism
of β-adrenergic receptors only prevented extinction learning
in the AAA paradigm, given the fact that the change in
context during extinction learning in the ABA paradigm
would be expected to elicit a higher level of locus coeruleus
firing and thus, of noradrenaline release. Extinction of context
‘‘A’’ was impaired when propranolol was applied prior to
extinction learning on day 4 (AAA paradigm), and when
applied prior to re-exposure to the (unrewarded) ‘‘A’’ context
on day 5 (ABA paradigm), suggesting that the robustness of
this effect was not compromised by the context-dependent
extinction event on day 4 in the ‘‘ABA’’ paradigm. We did
not see an effect in extinction in the ‘‘A’’ context on day
5, when propranolol was given prior to extinction learning
in context ‘‘B’’ on day 4, however. We propose that this is
because propranolol is rapidly metabolized from the animals’
system (Bargar et al., 1983; Baughman et al., 2009) and few
or no β-adrenergic receptors remained under the influence
of the antagonist when behavior was tested 24 h after
the antagonist had been applied. Taken together, our data
suggest that β-adrenergic receptor activation is an important
component for extinction learning in the absence of a context
change.
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This is not the case, however, for context-dependent
extinction. The change of context facilitated extinction in control
animals, and this effect was not hindered by antagonism of
β-adrenergic receptors. One possibility is that the context
change promotes a more intense release of noradrenaline from
the locus coeruleus that activates β-adrenergic receptors in the
hippocampal CA regions (Loy et al., 1980) and promotes the
novel encoding of this new associative experience. Another
possibility is that under conditions of increased arousal during
the context change, dopamine that is released from the locus
coeruleus (Lemon and Manahan-Vaughan, 2012; Smith and
Greene, 2012) serves to reinforce the extinction learning
process and compensated for the absence of β-adrenergic
receptors (that occurred under the experimental conditions
of the present study). In contrast, under conditions where
no context change accompanied extinction learning, arousal
levels can be expected to be comparatively lower, and
learning under these conditions was tightly dependent on
noradrenaline acting on β-adrenergic receptors. This possibility
is supported by observations that depletion of noradrenaline
impairs extinction learning of appetitive behavior (Mason
and Iversen, 1975, 1978; Mason, 1979; McGaugh, 2002). It
may also be the case that a more intense NA release was
stimulated by the context change that was not overcome by
the antagonist dose used. However, this seems less likely,
because treatment of an animal cohort prior to re-exposure
to the ‘‘A’’ context, following successful extinction learning
in the ‘‘B’’ context, failed to prevent renewal but significantly
prevented subsequent re-extinction of the behavior learned in the
‘‘A’’ context.

It was striking that following inhibition of extinction in
day 4 in the AAA context (following prior treatment with
propranolol), renewal behavior occurred in the ‘‘A’’ context on
day 5. We believe this effect adds support to our interpretation
that β-adrenergic receptor antagonism affected attention but not
learning per se. If learning had been impaired by the antagonist,
a further, at least initial, suppression of extinction would have
been expected on day 5: the animals had not learned (on day 4)
that the ‘‘A’’ context can no longer be associated with a reward
and thus, do not persevere to search for a reward in this context.
Our animals showed renewal behavior, however, that refutes
this possibility. If attention, and not, learning was affected by
the antagonist, then the animal could be expected to fail to
notice (on day 4) that the selected arm had previously been
entered without reward success. This is not implausible, bearing
in mind that reward probability had been reduced to 25% on
day 3. Cumulatively, during day 4, the animal could still learn
that in total, no food reward at all had been found during
the 20 trials, but not bring this behavior into association with
the previously learned CS-US response. Under these conditions,
the animal would be expected to show normal initial renewal
behavior on day 5. This was indeed the case in the present
study.

Propranolol did not affect decision-time in the ABA
paradigm, but in the AAA paradigm, decision times were
slightly, but nonetheless, significantly better in the presence
of propranolol during extinction learning on day 4. Despite

this, extinction was impaired in the AAA paradigm in the
presence of the β-adrenergic receptor antagonist. This further
suggests that attention was undermined, and the animals failed
to notice that the 25% reward probability had decreased to
0%. Blocking β-adrenergic receptors impairs rodent and human
performances in attentional tasks (Hahn and Stolerman, 2005;
de Martino et al., 2008). Furthermore, noradrenaline release
from the locus coeruleus serves to enhance neuronal responses
towards discrete stimuli and thereby to increase the signal-to-
noise ratio (Woodward et al., 1979; Sara, 1985; Servan-Schreiber
et al., 1990; Lemon and Manahan-Vaughan, 2012). Attentional
set-shifting is supported by noradrenaline acting on the medial
prefrontal cortex (Lapiz and Morilak, 2006; Tait et al., 2007;
McGaughy et al., 2008; Snyder et al., 2012). Moreover, neuronal
activity in the locus coeruleus precedes activity in the prefrontal
cortex that is triggered by a CS (Snyder et al., 2012). Our
observations that propranolol prevented extinction in the AAA
paradigm is in line with the likelihood that noradrenaline release
from the locus coeruleus is required in circumstances that
require enhanced attentional focus and an associated change in
behavioral strategy, as proposed by others (Bouret and Sara, 2005;
Yu and Dayan, 2005; Dayan and Yu, 2006). In addition, our
findings suggest that this kind of neuromodulation is mediated
by noradrenaline acting on β-adrenergic receptors. This in turn
may enable qualitative control over extinction learning whereby,
under specific circumstances, attentional focus is optimised when
extinction learning should take place under subtle (constant
context) conditions. In line with this, a role for noradrenaline in
the neuronal encoding of prediction errors has been proposed
(Schultz and Dickinson, 2000). This would support, for example,
attentional focus towards and the registration of subtle changes
in environmental conditions that could facilitate extinction
learning.

Concluding Remarks

In conclusion, the findings of this study indicate that in an
appetitive learning task that includes low reward probability,
antagonism of β-adrenergic receptors impairs extinction in the
absence of a context change (AAA paradigm), but does not
affect extinction that is supported by a change of context
(ABA paradigm). The inhibition of extinction that occurred
in the AAA paradigm suggests that NA modulation of
attentional focus is an important factor for the extinction of
appetitive experience. Recent studies conducted in the context
of reconsolidation blockage have indicated that propranolol
prevents the reconsolidation of emotional memories (Kindt et al.,
2009; Schwabe et al., 2012). These studies raise hope for the
usage of propranolol as a potential treatment for post-traumatic
stress disorder (Pitman and Delahanty, 2005). However, other
studies reported that propranolol impairs fear extinction in
humans, especially at a cognitive level (Bos et al., 2012). Taken
together, with findings obtained under non-emotive/non-fearful
conditions, this suggests that the effects of beta-blockade might
be harmful, rather than beneficial, if extinction takes place in an
appetitive context, and if cognitive rather than affective changes
are desired.
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