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Effects of Stress on Learning
and Memory

Evidence for Sex Dffirences in Humans

Oliver T. Wolf

Introduction

There is good evidence that women and men differ in how they respond to stressors,
based upon endocrinological and behavioral responses (Täylor et aI.,2000). These
differences might translate into vulnerabilities for dissimilar stress-associated
psychiatric disorders. Compared to men, women have, for example, a higher
risk for major depression, posttraumatic stress disorder, and several anxiety disor-
ders (Nemeroff et aI., 2006; Yehuda, 2002), but lower prevalence in conduct
disorders, psychopathy, substance abuse, and autism (Zahn-Waxler et al., 2008).

\A4ren discussing possible sex differences in how stressors affect learning
and memory, two possible scenarios should be considered. On the one hand, sex
differences might occur because the two sexes differ in their endocrinological
response to a stressor. Alternatively or additionally sex differences might reflect
a different responsivity of the brain to the same neuroendocrine stress signal (e.g.,
glucocorticoids).

Endocrinologically, both sexes respond to stressors with the activation of the
hypothalamic-pituitary-adrenal (HPA) axis, leading to a rise in cortisol (the most
prominent glucocorticoid in humans). The magnitude of the HPA axis response is
modulated by gondal steroids (Kajantie and Phillips, 2006; Kudielka and Kirschbaum,
2005; Taylor et al., 2000). Experimental studies in humans using psychosocial labo-
ratory stressors often observed that men showed a stronger HPA axis response to a

stressor than women (Kajantie and Phillips,2006; Kudielka and Kirschbaum,2005).
However, this might depend on the specific paradigm used (Stroud et al., 2002) and
no strong overall influence of sex on the cortisol response to laboratory stressors

The Handbook of Stress: Neuropsychological Eft'ects on the Brain, First Edition.
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was detected in a recent large meta-analysis, which however did not further inves-

tigate a possible influence of menstrual cycle (Dickerson and Kemeny, 2004).

Moreover, in a real-life stress study (oral exam at the university), no sex differences

in stress-induced cortisol elevations were detected (Schoofs et a1.,2008a).

In women, fluctuations of gonadal steroids during the menstrual phase seem to
further modulate the HPA axis response. A more pronounced HPA axis response

to stressors is observed during the luteal phase (Kajantie and Phillips,2006; Kudielka

and Kirschbaum, 2005), which is characterized by elevated progesterone and estra-

diol levels. The situation in humans is further complicated by the fact that oral

hormonal contraceptives appear to dampen the free (unbound; i.e., biologically
active) cortisol stress response, possibly by increasing cortisol-binding globulin
(Kirschbaum et al., 1999).

To conclude, sex and gonadal steroids impact HPA axis reactivity in humans, with
the magnitude of this influence being moderate and the variance of the reported

results large. Nevertheless, as a result of the complex interaction between the HPA

axis and the hypothalamic*pituitary-gonadal axis, a lot of experimental human

studies are conducted exclusively with men. Moreover, in studies with women,
information about menstrual cycle phase and/or hormonal contraception are often

not taken into account in the experimental design (e.g., Beckner et al., 2006; Smeets

et al., 2008). Similarly, most rodent studies focus exclusively on males when con-

ducting stress effects on memory (Diamond etaI.,2007; Joels et a1.,2006; Sandi and

Pinelo-Nava,2007).
For the current chapter, the focus is on possible differences in sensitivities of the

brains of men and women for stress and stress hormones. I will review evidence for
sex differences in the impact of acute experimentally induced stress on episodic

long-term memory, working memory, and two forms of classical conditioning
(eyeblink and fear conditioning).

Effects of Stress on Episodic Memory:
Evidence for Sex Differences?

Episodic long-term memory refers to the conscious and voluntary storage of spe-

cific events that are connected to a spatial and temporal context. Together with
semantic memory (the knowledge of facts and rules about the world) it is referred

to as declarative or explicit memory. Episodic memory relies on the hippocampus,
a brain structure within the medial temporal lobe (LaBar andCabeza,2006; Nadel

and Moscovitch, 1997). Long-term memory processes can be further divided

according to specific memory phases (encoding or acquisition), consolidation, and

retrieval (see Roozendaal et al., 2006, Wolf, 2008, 2009).

Experiments in rodents and humans have established that stress influences epi-

sodic long-term memory (see Chapters 8, 9, 11, and 12 in this volume). It has been

reported that stress within the learning context (i.e., when the learning condition
is stressful) enhances memory consolidation (Joels et a1.,2006; Roozendaal et al.,
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2006).In contrast, memory retrieval of previously learned information is impaired
when we are stressed (Roozendaal et al.,2006; Woll 2008, 2009). The beneficial
effects on consolidation as well as the impairing effects on retrieval are more pro-
nounced for emotionally arousing stimuli (e.g., emotional pictures or word; Wolf,
2009). Animal studies illustrate that these effects are mediated by an interactive
effect of glucocorticoids with noradrenergic arousal (induced by a concurrent acti-
vation of the sympathetic nervous system). The basolateral nucleus of the amygdala
influences the hippocampus, thereby creating a state where memory consolidation
is enhanced, but memory retrieval is impaired (Roozendaal et a1., 2006,2009).
Human behavioral, pharmacological, as well as neuroimaging studies demonstrate
that similar results occur in humans (de Quervain et al., 2009; Wolf, 2008, 2009).

With respect to possible sex differences, studies in rodents report that acute
(Conrad et al., 2004) as well as chronic (Bowman et al., 2001; Luine, 2002) stress

impairs spatial (hippocampal-dependent) memory in male rats. In contrast to
males, stress in females enhances memory, thus leading to truly opposing effects of
stress on memory in the two sexes (Conrad et al., 2004; Bowman et al., 2001; Luine,
2002). However it has to be mentioned that not all studies observed strong sexual
dimorphic response to stress (Park et al., 2008, see also Chapter 26 for more infor-
mation on sex differences in rodents).

In a first studyon the issue of sex differences in humans (Wolf et al.,2001b), it
was investigated whether men and women differ in the association between the
stress-induced cortisol response and its effect on episodic memory. A previous study
from our laboratory (Kirschbaum et al., 1996) as well as findings from others
(Takahashi et al., 2004) had reported that a more pronounced stress-induced
cortisol rise was associated with impaired memory afterwards (encoding and imme-
diate retrieval). Stress was induced prior to encoding with the use of the Tiier Social
Stress Test (TSST; Kirschbaum et al., 1993), a well-established human laboratory
stressor combining a free-speech and a mental-arithmetic task in front of an audi-
ence, which leads to robust HPA axis activation. It is the combination of motivated
performance, uncontrollability, and social-evaluative threat makes TSST so power-
ful (Dickerson and Kemeny,2004). Overall no effects of stress on memory were
found; however, the cortisol response within the stress group was strongly associated
with poorer memory in men (r= -.82), while no such association was observed in
women. In this study all women were tested in the luteal phase of their menstrual
cycle to assure a similar HPA axis response to the stressor in both sexes (Kirschbaum
et al., 1999). This suggests that women (at least in the luteal phase) are less sensitive
to the memory-impairing effect of stress on immediate recall (Wolf et a1.,200lb).
The situation might be different for the beneficial effects of cortisol on memory
consolidation. Here studies reported a significant positive correlation between
cortisol and memory consolidation for women in the luteal phase (Andreano
et al., 2008) or for women not stratified for menstrual cycle phase (Preuß and Wolf,
200e).

Additional studies on the topic of sex differences focused on stress or cortisol
effects on memory retrieval. Using a pharmacological approach it had been shown
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that cortisol administered prior to memory retrieval had impairing effects in men
(wolf et al., 2001a). This finding was extended rater on to women (Kuhlmann
et a1.,2005a). In order to characterize the influence ofgonadal steroids further, three
groups of women were investigated: (l) women in the early follicular phase (low
estradiol and progesterone), (2) women in the luteal phase (high estradiol and
progesterone), and (3) women using oral contraceptives ( low endogenous but high
exogenous estrogens and progestins). Both groups of freely cycling women showed
memory-retrieval impairment after cortisol treatment. In contrast, no effect was
observed in the oral-contraceptive group (Kuhlmann and wolf, 2005). This indi-
cated that the exogenous synthetic sex steroids directly or indirectly reduced the
sensitivity of the central nervous system to glucocorticoids.

Most recently, the effects of stress on memory retrieval in women in the luteal
phase were tested using a psychosocial stress protocol (TSST). These women fäiled
to show evidence for stress-induced retrieval impairment (Schooß and wolf, 2009),
which was in contrast to results obtained in men (Kuhlmann et al., 2005b) and
also in contrast to the results from the aforementioned pharmacological study
(Kuhlmann and woll 2005). Those data suggest that women in the luteal phase of
the menstrual cycle are less susceptible to stress induced memory impairment (but
not to pharmacological cortisol-induced memory impairments). There is good
evidence to hypothesize that this effect is mediated by progesterone, since proges-
terone (among other ways of action) can bind to the glucocorticoid recepto.
(Schoofs and Wolf, 2009).

Täken together, research in humans provides evidence that the effects of stress on
episodic long-term memory are sometimes less pronounced in women compared
to men. This appears to be the case for encoding, consolidation, as well as retrieval.
However, stress effects in women are by no means absent for this domain. Most
importantly, an opposing pattern (as has been reported in rats; see conrad et al.,
2004, but see also Diamond et a1.,2007) has so far not been reported. The conclu-
sions to be drawn are so far limited by the fact that several studies tested only one
sex and/or did not report possible sex differences. Finally specific menstrual-cycle
phases have only be investigated in very few studies on this issue (Andreano et al.,
2008; Kuhlmann and Wolf,2005).

Effects of Stress on Working Memory:
Evidence for Sex Differences?

working memory refers to a short-term storage and manipulation system thought
to be situated within the prefrontal cortex. Studies in rodents have reported that
females are more susceptible to the acute effects of stress on working memory. This
enhanced stress susceptibility was mediated by estradiol (shansky el al., z0o+, z}os;
Shansky, 2009). In humans, the effects of stress (or cortisol treatment) on working
memory have not been investigated very often. In addition, results are quite hetero-
geneous. Several recent studies, however, observed that stress impaired working
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memory at least when difficult and challenging working memory tasks are used
(Luethi et al., 2008; Oei et al., 2006; Schoofs et al., 2008b, 2009). However, those
studies were all conducted in healthy young men, so that no information is available
on the presence of sex differences. Along these lines, previous pharmacological
studies investigating the effects of cortisol on working memory have also been
conducted almost exclusively in men (Lupien et a1., 1999; Wolf et al., 2001a). Thus
additional studies are needed to test the hypothesis derived from studies with
rodents that the female prefrontal cortex is more susceptible to stress.

Effects of Stress on Classical Conditioning:
Evidence for Sex Differences?

Rodent studies on the topic of stress and learning have often used classical condi-
tioning paradigms, with eyeblink conditioning and fear conditioning being used
the most. In these studies the animal learns that a previously neutral stimulus (the
conditioned stimulus, CS; e.g., a tone) predicts an aversive event (the unconditioned
stimulus, US; e.g., an air puff to the eye, or a foot shock). Several conditioning para-
digms need to be differentiated. Delay conditioning (CS coterminates with the US)
has to be differentiated from trace conditioning (there is a short interval or troce
between the CS and the US). Only the latter is thought to depend on hippocampal
functioning (Christian and Thompson, 2003). In addition, simple conditioning
paradigms (a single CS predicts the US) can be contrasted with discriminative tasks
(a CS+ predicts the US, while in contrast a CS- predicts the absence of the US).

Eyeblink conditioning

The most impressive and consistent sex differences in rodents have been reported
for the domain of eyeblink conditioning. Shors and colleagues observed that in the
no-stress control condition female rats outperform their male counterparts in
simple conditioning. This sex difference is reversed following acute stress, when
males outperform females (Dalla and Shors, 2009; Shors, 2004). Several stressors
produce this effect and it occurs in delay, as well as trace conditioning paradigms.
Of note, the sex difference pattern differs (is a mirror image) from that observed
with spatial tasks (Conrad et al., 2004). However, both describe scenarios whereby
sex differences under nonstressed conditions are reversed following acute stress.

Surprisingly, few studies have investigated the effects of acute stress on eyeblink
conditioning in humans. Of the few studies, one observed that a mild version of
the Cold Pressor Test enhanced hippocampal-dependent trace conditioning in men,
but females were not tested (Duncko et al., 2007).In addition, the stressor failed to
activate the HPA axis, indicative of a failure to truly induce stress. This study sug-
gests a beneficial effects of ardrenergic arousal on eyeblink conditioning while
permitting a strong conclusion about HPA-mediated effects.
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Block 1 Block 2 Block 3 Block 4 Block5 Block6 Extinction

-:** male stress --l- female stress - -g-. male controls - l- - female controls

Figwe27.l Effects of acute psychosocial stress on acquisition and extinction of delay

eyeblink conditioning. Stress led to slower acquisition in men and women, but had no effect

on extinction. CR, conditioned response. Source: Reprinted from Wolf et al. (2009). With
permission from Elsevier.

Recently, the impact of a psychosocial stressor (TSST) on delay conditioning in
healthy men and women was tested, representing the only study published, as of
today, that tested acute stress effects on simple delay eyeblink conditioning (Wolf
et al., 2009). In contrast to the observations made in rats, men and women per-
formed similarly in their eyeblink conditioning in the control condition. In both
sexes stress impaired eyeblink conditioning (Figure 27.1). Moreover, higher cortisol
levels were associated with impaired conditioning (Wolf et al., 2009). Taken together
this study indicates that stress induced cortisol elevations impair the acquisition of
eyeblink conditioning in men and women.

The idea that stress-induced cortisol elevations cause impaired eyeblink condi-
tioning in humans is supported by recent pharmacological studies (Vlthilingam
et a1.,2006), as well as by studies in patients with endogenous hyppercortisolemia
(Grillon et aL,2004). Why our study in humans failed to find the striking sex dif-
ferences observed in rats (see Dalla and Shors,2009; Shors,2004) is perplexing.
There are at least three possible explanations. First, Wolf et al. (2009) did not observe

any a priori sex differences before acute stress was applied in the nonstressed con-
trols, which contrasts with the work using rats (Dalla and Shors,2009; Shors, 2004).

Second, a psychosocial laboratory stressor was used in the human study, while Shors

used physical stressors. Physical and psychological stressors differ with respect to
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activated brain regions (ulrich-Lai and Herman,2009). Third, the conditioning
procedure used is quite invasive in rats (the electrodes are implanted. into the eyelid,
whereas it is noninvasive in humans: we used special goggles for the assessment of
the eyelid reflex). Rodent studies have repeatedly observed that task aversiveness is
an important mediator in determining the effects of stress on memory (conrad,
2005; Sandi and Pinelo-Nava,2007).A fourth explanation would simply state that
humans and rodents differ in how stress influences their eyelid-conditioning
abilities. Additional studies in humans on this topic are needed, but this example
illustrates that current extrapolation from animal studies to the human situation
needs to be made with caution.

Fear conditioning

Surprisingly little information is available on possible sex differences in fear condi-
tioning in rodents. The impressive sexual dimorphic acute stress effects observed
with eyelid conditioning have not been reported for this amygdala-dependent form
of emotional learning, making the evaluation of this topic difficult. Either it has
not been tried or the results have been nonsignificant and therefore were not pub-
Iished. However, at least for chronic stress sexual dimorphic responses in rats have
been studied and reported (Baran et al.,2009).

In human stress research, several studies report fear conditioning effects with
sex differences consistently found. Stress or cortisol exerts sex-dependent effects
on this form of emotional learning, which depends upon the amygdala and other
brain regions (LaBar and cabeza,2006). Three previous studies related basal
and/or stress-induced cortisol levels to fear conditioning performance in men and
women. Stress exposure or elevated/rising cortisol levels were associated with
enhanced fear conditioning in men, but not women (fackson et a1.,2006;Zorawski
et al., 2005, 2006).

Recently an alternative approach was implemented to investigate the effect of
stress hormones on fear conditioning. Cortisol levels were experimentally manipu-
lated using a placebo-controlled design. In this neuroimaging study (functional
magnetic resonance imaging, fMRI) fear conditioning was conducted inside the
scanner using a discriminative fear-conditioning paradigm (CS+ compared to cs_)
with neutral (geometric symbols) stimuli as the CS and a mild electric shock as the
UC. In the first study on this topic, cortisol impaired peripheral as well as neural
correlates of fear conditioning in men, yet enhanced them in women (Stark et al..
2006). Under placebo women showed poorer fear conditioning, while under cortisol
the opposite pattern was observed (Stark et al., 2006). The same sex-depend.ent
effects of cortisol administration were observed in three frontal regions; namely the
anterior cingulate gyrus, the lateral orbitofrontal cortex, and the medial prefrontal
cortex. In all three regions cortisol enhanced neuronal activity (the contrast CS+
minus CS-) in women, while reducing it in men.
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In a second study (Plate 6) these opposing effects ofcortisol on neural correlates
of fear conditioning in men and women were replicated. This time an implicit
(without contingency awareness) fear-conditioning paradigm was administered
(Merz et al., 2010). contingency awareness is known to influence the peripheral as
well as neural correlates of classical conditioning. By interleaving the presentation
of the cs stimuli with a second demanding task (an n-backworking-memory task)
participants can be successfully prevented from becoming aware of the contingen_
cies between the CS+ and the US. Previous studies have established that a lack of
contingency awareness causes an abolishment of some peripheral indices of fear
conditioning (electrodermal response; Hamm and weike, 20b5). In contrast, clear
evidence for fear conditioning can be detected at the neural levels using fMRI
(Tabbert et al., 2006). Using the just-described paradigm the effects of cortisol on
implicit fear conditioning were tested, focusing on possible sex differences (Merz
et al.' 2010). Again opposing effects of cortisol administration in men and women
occurred. Due to the implicit nature of the fear-conditioning paradigm the location
of the effects had shifted from prefrontal regions towards subcortical regions. It was
observed that cortisol reduced activity in the thalamus, insula, and hippocampus
in men. In contrast in women (who showed lower activity under placebo than men)
cortisol enhanced activity in these regions (Merz et al., 2010). this second study
again indicates that cortisol enhances the neuronal correlates of fear learning in
women, while impairing them in men.

The direction of the observed effects in our pharmacological study (impairing
effect of cortisol on fear conditioning in men) contrasts to those observed
after psychosocial stress (fackson et a1.,2006; Zorawski et a1.,2006). At least two
explanations are plausible. Nonlinear dose-response relationships might underlie
an enhancement of fear conditioning in men after stress, while a substantial increase
in cortisol in response to pharmacological cortisol treatment might impa ir fear
conditioning. A second explanation could focus on the timing and/or on the
neuroendocrine mediators involved. An increase in cortisol levels due to stress is
preceded by a rise in hypothalamic (and extrathalamic) corticotropin-releasing
hormone, which could enhance fear conditioning directly (croiset et a1.,2000). In
contrast, cortisol treatment reduces corticotropin-releasing hormone via its nega-
tive feedback on the HPA axis (Ioels and Baram, 200g).In addition, other stress
mediators (e.g., the sympathetic nervous system) might be responsible for the dif-
ference between experimental stress studies and cortisol-administration studies.
Future studies are needed to test these hypotheses and to create a more detailed
picture on the effects of stress on fear conditioning in humans.

Despite some of the unresolved issues discussed, one can conclude that our
pharmacological studies (Merz et al., 2010; stark et a1.,2006) observed substantial
and opposing effects of the stress hormone cortisol on neural correlates of fear
conditioning. Together with the studies investigating the effects of stress-induced
alterations on peripheral fear conditioning (see summary above; Jackson et ar.,2006;
Zorawski et al., 2005, 2006) they illustrate evidence that sex differences in the
response to stressors or stress hormones in fear conditioning can be substantial.
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Summarv

In this chapter, evidence was reviewed for sex differences in the influence of stress
and cortisol on learning and memory processes. For episodic memory, some evi-
dence exists that women compared to men are sometimes less susceptible to stress
or cortisol treatment (Kuhlmann and wolf, 2005; schoofs and wolf, 2009; wolf
et al., 2001b). However, the empirical situation is quite heterogeneous. Tiuly oppos-
ing effects of stress on episodic memory in men and women have not been observed
in humans as of today, as found in rodents (Conrad et a1.,2004).

Possible sex differences have not been investigated sufficiently for the area of
human working memory. Thus it awaits to be determined, whether the enhanced
stress susceptibility observed in female rats (Shansky etaI.,2004,2006; shansky,2009)
translates into a higher stress sensitivity in women (with respect to working memory).

For eyeblink conditioning stress impaired performance in men and women (wolf
et al., 2009). Thus, for this form of classical conditioning the strong and opposing
sex differences observed in rodents (Dalla and shors,2009; shors,2004) could so
far not be found in humans. Possible reasons for these discrepancies have been
discussed above and additional empirical work is needed to decide which of the
possible explanations are true.

In contrast sex differences have been repeatedly shown in the domain of fear
conditioning. Studies observed that the effects of stress were more pronounced in
men, while being blunted or absent in women (Jackson et a1.,2006;Zorawski et al.,
2005, 2006) ' Research using a pharmacological approach demonstrated that cortisol
impaired the neuronal correlates of fear conditioning in men, while enhancing them
in women (Merz et al., 2010; stark et al., 2006). Thus, cortisol treatment during fear
conditioning led to opposing results in men and women, similarly to those reported
in rodents using spatial tasks (Conrad et al., 2004) or eyeblink conditioning lluttu
and Shors, 2009; Shors, 2004).

At the very least, the empirical evidence supports the notion that sex has to be
taken into account when investigating the effects of stress on learning and memory
(in all species). At the same time, the complex picture argues against any global
conclusions that argue that "women are more (or less) susceptible to stress." The
results appear to be mediated by numerous factors, among them type (and dura-
tion) of the stressor, and memory domain assessed. It is conceivable that the effects
of psychological stressors might differ from those of more physical stressors so a
systematic comparison would be of interest. In addition the memory phase invest-
igated (acquisition, consolidation, and retrieval) needs to be taken into account.
High estradiol levels in women might make them more stress-susceptible in some
cognitive domains but not others. In addition, it is important to emphasize that
activational effects of gonadal steroids might not be the source of sex differences,
as organization, genetic or other events could be important.

The topic of human aging has not been addressed in this review Due to the
substantial changes in sex steroid levels after the menopause (and to a lesser degree
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in aging men as well) the topic of sex steroids and memory after stress exposure is
of substantial relevance for aging individuals (wolf and Kudielka,200g). The empir-
ical evidence for antistress effects of sex steroid treatment in older women is so
far sparse (Wolf and Kudielka, 2008). While basic science studies conducted in
rodents are somewhat promising more research is needed before clinical trials can
be initiated.

When Do We See Sex Differences? Some Hnrotheses

Despite the somewhat unsatisfting empirical situation, it has become obvious that
sex differences are not omnipresent in this field. Thus, the challenging theoretical
question is to understand the conditions leading to sex differences (in the effects of
stress on learning and memory). The fear-conditioning results could be interpreted
in a way suggesting that sex differences occur most likely in tasks relying heavily on
the amygdala. studies on the topic of emotional memory have repeatedly observed
sex differences (Andreano and cahill,2009; cahill, 2006) and this has been in part
attributed to a sexually dimorphic response of the amygdala. Thus, highly emotional
learning and memory task might show sexually dimorphic stress effects.

Another broader and not mutually exclusive explanation focuses on baseline sex
differences. Based on the human fear conditioning findings, as well as on some of
the behavioral studies in rodents (conrad et a1.,2004; Dalla and Shors, 2009; shors,
2004), one could hypothesize that sex differences under stress free control condi-
tions predict a sexually dimorphic response after stress. Thus, stress might abolish
or even reverse sex differences, which are present prior to stress and therefore might
reflect sex differences in cerebral organization. Along these lines, there might be a
sex-specific shift in neural processes underlying spatial memory after stress, which
reflect in part sex differences prior to stress (Beck and Luine,20l0). This hypothesis
focused on the observation that stress appears to induce a shift away from hippoc-
ampal (cognitive) forms of memory towards caudate-based (habit or stimulus
response) forms of memory (Dias-Ferreira eta1.,2009;schwabe et a1.,2010).while
this hlpothesis is quite attractive from a conceptual point of view, human studies
on this topic have not observed strong sex differences (schwabe eta1.,2007;Schwabe
and wolf, 2009). The more global hlpothesis that sex differences occurring in a
stress-free control condition predict sex differences after stress could still be accurate
and should be tested in future human studies using memory measures with known
sex differences.

Outlook

The above summary indicates that there is some evidence for sex differences in how
stress affects learning and memory, but clearly more research in this area is needed.
of course the inclusion of women into a psychoneuroendocrine study comes with
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a whole package of additional issues. Should one differentiate menstrual cycle
phases and if yes, then how many phases should be considered? what about hor-
monal contraceptives (which again come in hundreds of different varieties)?
Depending on how detailed one would like to tease apart possible interactions
between gonadal hormones and stress hormones, three or four groups need to be
studied (Andreano et aI.,2008; Kuhlmann and wolf,2005), which will substantially
increase running costs and time for data collection. A feasible initial approach might
be to first study women, without taking into account their current sex steroid status
and depending on the initial findings, pal attention to the menstrual cycle issue in
a follow-up study (e.g., Andreano and cahill, 2006; Andreano et al., 200g). \,r/hile
the decision to study males only can be understood from a pragmatic point of view,
it leads to an unsatisfactory empirical situation. It is clearly unacceptable when half
of the population is ignored. Moreover, the inclusion of both sexes often leads
to quite exciting results thus rewarding those scientists who take the extra effort to
study both sexes in parallel.
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